Research Paper | Published:

Potential Shuttle Vectors Based on the Methanogen Plasmid pME2001

Bio/Technologyvolume 3pages6972 (1985) | Download Citation

Subjects

Abstract

Methane is produced by anaerobic archaebacteria known as methanogens. Currently the only available plasmid from a methanogen is pME2001. We have incorporated pME2001 into plasmids which should be capable of replication in a range of microbial host species. Plasmid pET2411, a recombinant plasmid formed by joining pBR322 to pME2001, directs the synthesis of pME2001 encoded polypeptides in Escherichia coli but cannot replicate in E. coli in the absence of E. coli DNA polymerase I.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Klass, D.L. 1984. Methane from anaerobic fermentation. Science 223: 1021–1028.

  2. 2

    Balch, W.E., Fox, G.E., Magrum, L.J., Woese, C.R. and Wolfe, R.S. 1979. Methanogens: re-evaluation of a unique biological group. Microbiol. Rev. 43: 260–296.

  3. 3

    Zeikus, J.G. 1982. Metabolism of one-carbon compounds by chemotropic anaerobes. Adv. Microbiol. Physiol. 24: 199–251.

  4. 4

    Vogels, G.D. and Visser, C.M. 1983. Interconnection of methanogenic and acetogenic pathways. FEMS Microbiol. Lett. 20: 291–297.

  5. 5

    Daniels, L., Sparling, R. and Sprott, G.D. 1984. The bioenergetics of methanogenesis. Biochem. Biophys. Acta. 768: 113–163.

  6. 6

    Smith, M.R. and Mah, R.A. 1981. 2-Bromoethanesulfonate: A selective agent for isolating resistant Methanosarcina mutants. Curr. Microbiol. 6: 321–326.

  7. 7

    Kiener, A., Holliger, C. and Leisinger, T. 1984. Analogue-resistant and auxotrophic mutants of Methanobacterium thermoautotrophicum. Arch. Microbiol.: In press.

  8. 8

    Reeve, J.N., Trun, N.J. and Hamilton, P.T. 1982. Beginning genetics with methanogens; p. 233–244. In: Genetic Engineering of Micro-organisms for Chemicals. Hollaender, A., DeMoss, R. D., Kaplin, S., Konisky, J., Savage, D., and Wolfe, R. S. (eds.), Plenum Press, New York, N.Y.

  9. 9

    Beckler, G.S., Hook, L.A. and Reeve, J.N. 1984. Chloramphenicol acetyltransferase should not provide methanogens with resistance to chloramphenicol. Appl. Envir. Microbiol. 47: 868–869.

  10. 10

    Hamilton, P.T. and Reeve, J.N. 1984. Cloning and expression of archaebacterial DNA from methanogens in Escherichia coli, p. 291–307. In: Microbial Chemoautotrophy. Strohl, W. R. and Tuovinen, O. H. (eds.), Ohio State University Press. Columbus, OH.

  11. 11

    Wood, A.G., Redborg, A.H., Cue, D.R., Whitman, W.B. and Konisky, J. 1983. Complementation of argG and hisA mutations of Escherichia coli by DNA cloned from the archaebacterium Methanococcus voltae. J. Bacteriol. 156 19–29.

  12. 12

    Morris, C.J. and Reeve, J.N. 1984. Functional expression of an archaebacterial gene from the methanogen Methanosarcina barkeri in Escherichia coli and Bacillus subtilis, p. 205–209. In: Microbial Growth on Cl Compounds. Crawford, R. L. and Hanson, R. S. (eds), A.S.M. Washington, DC.

  13. 13

    Meile, L., Kiener, A. and Leisinger, T. 1983. A plasmid in the archaebacterium Methanobacterium thermoautotrophicum. Mol. Gen. Genet. 191: 480–484.

  14. 14

    Baresi, L. and Bertani, G. 1984. Isolation of a bacteriophage for a methanogenic bacterium. Abs. 1984 Annual Meeting American Society for Microbiology, p. 133.

  15. 15

    Bagdasarian, M.M., Amann, E.A., Lurz, R., Ruckert, B. and Bagdasarian, M. 1983. Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled expression vectors. Gene 26: 273–282.

  16. 16

    Bolivar, F., Rodriguez, R.L., Green, P.J., Betlach, M.V., Heynecker, H.L., Boyer, H.W., Crosa, J.H. and Falkow, S. 1977. Construction and characterization of new cloning vehicles II. A multipurpose cloning system. Gene 2: 95–113.

  17. 17

    Stinchcomb, D.T., Thomas, M., Kelly, J., Selker, E. and Davis, R.W. 1980. Eukaryotic DNA segments capable of autonomous replication in yeast. Proc. Natl. Acad. Sci. U.S.A. 77: 4559–4563.

  18. 18

    Goze, A. and Ehrlich, S.D. 1980. Replication of plasmids from Staphylococcus aureus in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 77: 7333–7337.

  19. 19

    Goursot, R., Goze, A., Niaudet, B. and Ehrlich, S.D. 1982. Plasmids from Staphylococcus aureus replicate in yeast Saccharomyces cerevisiae. Nature. 298: 488–489.

  20. 20

    Jarsch, M., Altenbuchner, J. and Böck, A. 1983. Physical organization of the genes for ribosomal RNA in Methanococcus vannielii. Mol. Gen. Genet. 189: 41–47.

  21. 21

    Vieira, J. and Messing, J. 1982. The pUC plasmids, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268.

  22. 22

    Timmis, K.T., Cabello, F. and Cohen, S.N. 1978. Cloning and characterization of EcoRI and HindIII restriction endonuclease-generated fragments of antibiotic resistance plasmids R6-5 and R6. Mol. Gen. Genet. 162: 12–137.

  23. 23

    Reeve, J.N. 1984. Synthesis of bacteriophage and plasmid-encoded polypeptides in minicells, p. 212–223. In: Advanced Molecular Genetics. Pühler, A. and Timmis, K. N. (eds.), Springer-Verlag., Berlin, W. Germany.

Download references

Author information

Affiliations

  1. Department of Microbiology, The Ohio State University, Columbus, Ohio, 43210

    • Leo Meile
    •  & John N. Reeve

Authors

  1. Search for Leo Meile in:

  2. Search for John N. Reeve in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nbt0185-69