Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed)

A Corrigendum to this article was published on 01 November 2002

Abstract

The red fluorescent protein DsRed has spectral properties that are ideal for dual-color experiments with green fluorescent protein (GFP)1. But wild-type DsRed has several drawbacks, including slow chromophore maturation and poor solubility2,3. To overcome the slow maturation, we used random and directed mutagenesis to create DsRed variants that mature 10–15 times faster than the wild-type protein. An asparagine-to-glutamine substitution at position 42 greatly accelerates the maturation of DsRed, but also increases the level of green emission. Additional amino acid substitutions suppress this green emission while further accelerating the maturation. To enhance the solubility of DsRed, we reduced the net charge near the N terminus of the protein. The optimized DsRed variants yield bright fluorescence even in rapidly growing organisms such as yeast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Normalized excitation and emission spectra of representative DsRed variants.
Figure 2: Maturation kinetics of DsRed variants.
Figure 3: Simultaneous visualization of DsRed.

Similar content being viewed by others

References

  1. Matz, M.V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat. Biotechnol. 17, 969–973 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Baird, G.S., Zacharias, D.A. & Tsien, R.Y. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97, 11984–11989 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jakobs, S., Subramaniam, V., Schönle, A., Jovin, T.M. & Hell, S.W. EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Lett. 479, 131–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Sullivan, K.F. & Kay, S.A. (eds) Green fluorescent proteins. Vol. 58, Methods in Cell Biology. (Academic Press, San Diego, CA; 1999).

    Google Scholar 

  5. Heim, R., Cubitt, A.B. & Tsien, R.Y. Improved green fluorescence. Nature 373, 663–664 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Heim, R. & Tsien, R.Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescent resonance energy transfer. Curr. Biol. 6, 178–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Wall, M.A., Socolich, M. & Ranganathan, R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol. 7, 1133–1138 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Yarbrough, D., Wachter, R.M., Kallio, K., Matz, M.V. & Remington, S.J. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-Å resolution. Proc. Natl. Acad. Sci. USA 98, 462–467 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K. & Tsien, R.Y. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97, 11990–11995 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hawley, T.S., Telford, W.G., Ramezani, A. & Hawley, R.G. Four-color flow cytometric detection of retrovirally expressed red, yellow, green, and cyan fluorescent proteins. BioTechniques 30, 1028–1034 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Living Colors™ DsRed2. CLONTECHniques XVI, 2–3 (2001).

  14. Lauf, U., Lopez, P. & Falk, M.M. Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins. FEBS Lett. 498, 11–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Wiehler, J., von Hummel, J. & Steipe, B. Mutants of Discosoma red fluorescent protein with a GFP-like chromophore. FEBS Lett. 487, 384–389 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Terskikh, A. et al. “Fluorescent timer”: protein that changes color with time. Science 290, 1585–1588 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Cronin, S. & Hampton, R. A genetics-friendly GFP assay. Trends Cell Biol. 9, 36 (1999).

    Article  Google Scholar 

  18. Cadwell, R.C. & Joyce, G.F. Mutagenic PCR. In PCR Primer. A laboratory manual. (eds Dieffenbach, C.W. & Dveksler, G.S.) 583–589 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1995).

    Google Scholar 

  19. Verkhusha, V.V. et al. An enhanced mutant of red fluorescent protein DsRed for double labeling and developmental timer of neural fiber bundle formation. J. Biol. Chem. 276, 29621–29624 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Rossanese, O.W. et al. A role for actin, Cdc1p and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J. Cell Biol. 153, 47–61 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lakowicz, J.R. Principles of fluorescence spectroscopy, Edn. 2. (Kluwer Academic/Plenum Publishers New York, NY; 1999).

    Book  Google Scholar 

  22. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rossanese, O.W. et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol. 145, 69–81 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Sergey Lukyanov for sharing unpublished data, to Hiromi Sesaki and Rob Jensen for providing the pCox4-DsRed expression plasmid, to Susan Lindquist for use of the spectrofluorometer, to Dan Strongin for assistance with Supplementary Figure 1A, and to members of the Glick lab for feedback on the manuscript. This work was supported by grants from the National Science Foundation (MCB-9875939) and the American Cancer Society (RPG-00-245-01-CSM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin S. Glick.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bevis, B., Glick, B. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20, 83–87 (2002). https://doi.org/10.1038/nbt0102-83

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0102-83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing