Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Production of human clotting Factor IX without toxicity in mice after vascular delivery of a lentiviral vector

Abstract

Replication-deficient lentiviral vectors (LV) have been shown to enable the stable genetic modification of multiple cell types in vivo. We demonstrate here that vascular and hepatic delivery of a third-generation HIV-derived lentiviral vector encoding human Factor IX (LV-hFIX) produced potentially therapeutic serum levels of hFIX protein with no vector-mediated local or systemic toxicity of adult mice. Portal vein administration produced the highest serum levels of hFIX and demonstrated proportionally higher levels of gene transfer to the liver with up to 4% of hepatocytes expressing hFIX. Vascular delivery of a lentiviral vector encoding GFP resulted in genetic modification of up to 12% of liver cells. Cell proliferation was not required for hepatocyte transduction with either vector. Serum hFIX levels reached 4% of normal levels following vascular LV-mediated hFIX gene transfer and remained stable for months following vector administration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Serum FIX expression following vascular delivery of LV-hFIX.
Figure 2: Expression of hFIX in the liver after LV-hFIX gene transfer.
Figure 3: Kinetics of LV-luciferase (LV-luc) gene transfer.
Figure 4: Lentiviral transduction of the liver does not require cell proliferation.
Figure 5: Delivery of LV-hFIX in immunocompetent mice.

Similar content being viewed by others

References

  1. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gansbacher, B. et al. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. Exp. Med. 172, 1217–1224 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Roberts, M. et al. Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood 84, 2878–2889 (1994).

    CAS  PubMed  Google Scholar 

  4. McGuinness, R. et al. Anti-tumor activity of human T cells expressing the CC49-zeta chimeric immune receptor. Hum. Gene Ther. 9, 165–173 (1998).

    Google Scholar 

  5. Nguyen, K. et al. Direct synovial gene transfer with retroviral vectors in rat adjuvant arthritis. J. Rheumatol. 25, 1118–1125 (1998).

    CAS  PubMed  Google Scholar 

  6. McCormack, J. et al. Factors affecting long-term expression of a secreted transgene product after intravenous administration of a retroviral vector. Mol. Ther. 3, 516–525 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Patijn, G., Lieber, A., Schowalter, D., Schwall, R. & Kay, M. Hepatocyte growth factor induces hepatocyte proliferation in vivo and allows for efficient retroviral-mediated gene transfer in mice. Hepatology 28, 707–716 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Patijn, G., Lieber, A., Meuse, L., Winther, B. & Kay, M. High-efficiency retrovirus-mediated gene transfer into the livers of mice. Hum. Gene Ther. 9, 1449–1456 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Naldini, L., Blomer, U., Gage, F., Trono, D. & Verma, I. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11382–11388 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naldini, L. Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr. Opin. Biotechnol. 9, 457–463 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Zufferey, R., Nagy, D., Mandel, R., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat. Biotechnol. 15, 871–875 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Blomer, U. et al. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J. Virol. 71, 6641–6649 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Johnston, J. et al. Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J. Virol. 73, 4991–5000 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gasmi, M. et al. Requirements for efficient production and transduction of human immunodeficiency virus type 1-based vectors. J. Virol. 73, 1828–1834 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Park, F., Ohashi, K. & Kay, M. Therapeutic levels of human factor VIII and IX using HIV-1-based lentiviral vectors in mouse liver. Blood 96, 1173–1176 (2000).

    CAS  PubMed  Google Scholar 

  17. Park, F., Ohashi, K., Chiu, W., Naldini, L. & Kay, M. Efficient lentiviral transduction of liver requires cell cycling in vivo. Nat. Genet. 24, 49–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Wion, K., Kelly, D., Summerfield, J., Tuddenham, E. & Lawn, R. Distribution of factor VIII mRNA and antigen in human liver and other tissues. Nature 317, 726–729 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Pfeifer, A. et al. Transduction of liver cells by lentiviral vectors: analysis in living animals by fluorescence imaging. Mol. Ther. 3, 319–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Ge, Y., Powell, S., Roey, M.V. & McArthur, J. Factors influencing the development of an anti-FIX immune response following administration of AAV-FIX. Blood 97, 3–7 (2001).

    Article  Google Scholar 

  21. Snyder, R. et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat. Genet. 16, 270–276 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zufferey, R. et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J. Virol. 72, 9873–9880 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zufferey, R., Donello, J., Trono, D. & Hope, T. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J. Virol. 73, 2886–2892 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lipshutz, G. et al. In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol. Ther. 3, 284–292 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Romain Zufferey for his comments and thoughtful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James G. McArthur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsui, L., Kelly, M., Zayek, N. et al. Production of human clotting Factor IX without toxicity in mice after vascular delivery of a lentiviral vector. Nat Biotechnol 20, 53–57 (2002). https://doi.org/10.1038/nbt0102-53

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0102-53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing