Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice

Abstract

Infection of the mammary gland, in addition to causing animal distress, is a major economic burden of the dairy industry. Staphylococcus aureus is the major contagious mastitis pathogen, accounting for approximately 15–30% of infections, and has proved difficult to control using standard management practices. As a first step toward enhancing mastitis resistance of dairy animals, we report the generation of transgenic mice that secrete a potent anti-staphylococcal protein into milk. The protein, lysostaphin, is a peptidoglycan hydrolase normally produced by Staphylococcus simulans. When the native form is secreted by transfected eukaryotic cells it becomes glycosylated and inactive. However, removal of two glycosylation motifs through engineering asparagine to glutamine codon substitutions enables secretion of Gln125,232-lysostaphin, a bioactive variant. Three lines of transgenic mice, in which the 5′-flanking region of the ovine β-lactoglobulin gene directed the secretion of Gln125,232-lysostaphin into milk, exhibit substantial resistance to an intramammary challenge of 104 colony-forming units (c.f.u.) of S. aureus, with the highest expressing line being completely resistant. Milk protein content and profiles of transgenic and nontransgenic mice are similar. These results clearly demonstrate the potential of genetic engineering to combat the most prevalent disease of dairy cattle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Western blot analysis of lysostaphin production by transfected COS-7 cells.
Figure 2: Bacterial plate assay for staphylolytic activity.
Figure 3: Proteins in milk collected from mice on day 10 of lactation.
Figure 4: Western blot analysis of lysostaphin in milk collected from mice on day 10 of lactation.
Figure 5: Hematoxylin and eosin stained sections of lactating mouse mammary tissue obtained 24 h after an intramammary infusion of S. aureus (104 c.f.u.).

Similar content being viewed by others

References

  1. Kossaibati, M.A., Hovi, M. & Esslemont, R.J. Incidence of clinical mastitis in dairy herds in England. Vet. Rec. 143, 649–653 (1998).

    Article  CAS  Google Scholar 

  2. Myllys, V. et al. Bovine mastitis in Finland in 1988 and 1995—changes in prevalence and antimicrobial resistance. Acta Vet. Scand. 39, 119–126 (1998).

    CAS  PubMed  Google Scholar 

  3. Auldist, M.J., Coats, S., Rogers, G.L. & McDowell, G.H. Changes in the composition of milk from healthy and mastitic dairy cows during the lactation cycle. Aust. J. Exp. Agric. 35, 427–436 (1995).

    Article  Google Scholar 

  4. Auldist, M.J. et al. Effect of somatic cell count and stage of lactation on the quality and storage life of ultra high temperature milk. J. Dairy Res. 63, 377–386 (1996).

    Article  CAS  Google Scholar 

  5. Barbano, D.M., Rasmussen, R.R. & Lynch, J.M. Influence of milk somatic cell count and milk age on cheese yield. J. Dairy Sci. 74, 369–388 (1991).

    Article  Google Scholar 

  6. Klei, L. et al. Effects of milk somatic cell count on cottage cheese yield and quality. J. Dairy Sci. 81, 1205–1213 (1998).

    Article  CAS  Google Scholar 

  7. Bramley, A.J. & Dodd, F.H. Reviews of the progress of dairy science: mastitis control—progress and prospects. J. Dairy Res. 51, 481–512 (1984).

    Article  CAS  Google Scholar 

  8. Sutra, L. & Poutrel, B. Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J. Med. Microbiol. 40, 79–89 (1994).

    Article  CAS  Google Scholar 

  9. Craven, N. & Anderson, J.C. Phagocytosis of Staphylococcus aureus by bovine mammary gland macrophages and intracellular protection from antibiotic action in vitro and in vivo. J. Dairy Res. 51, 513–523 (1984).

    Article  CAS  Google Scholar 

  10. Yancey, R.J., Sanchez, M.S. & Ford, C.W. Activity of antibiotics against Staphylococcus aureus within polymorphonuclear neutrophils. Eur. J. Clin. Microbiol. Infect. Dis. 10, 107–113 (1991).

    Article  CAS  Google Scholar 

  11. Oldham, E.R. & Daley, M.J. Lysostaphin: use of a recombinant bactericidal enzyme as a mastitis therapeutic. J. Dairy Sci. 74, 4175–4182 (1991).

    Article  CAS  Google Scholar 

  12. Watson, D.L. Vaccination against experimental staphylococcal mastitis in dairy heifers. Res. Vet. Sci. 53, 346–353 (1992).

    Article  CAS  Google Scholar 

  13. Schindler, C.A. & Schuhardt, V.T. Lysostaphin: a new bacteriolytic agent for the Staphylococcus. Proc. Natl. Acad. Sci. USA 51, 414–421 (1964).

    Article  CAS  Google Scholar 

  14. Bramley, A.J. & Foster, R. Effects of lysostaphin on Staphylococcus aureus infections of the mouse mammary gland. Res. Vet. Sci. 49, 120–121 (1990).

    Article  CAS  Google Scholar 

  15. Gordon, K. et al. Production of human tissue plasminogen activator in transgenic mouse milk. Bio/technology 5, 1183–1187 (1987).

    CAS  Google Scholar 

  16. Wall, R. J. et al. High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proc. Natl. Acad. Sci. USA 88, 1696–1700 (1991).

    Article  CAS  Google Scholar 

  17. Wright, G. et al. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Bio/Technology 9, 830–834 (1991).

    CAS  PubMed  Google Scholar 

  18. Ebert, K. M. et al. Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Bio/Technology 9, 835–838 (1991).

    CAS  PubMed  Google Scholar 

  19. Krimpenfort, P. et al. Generation of transgenic dairy cattle using `in vitro' embryo production. Bio/Technology 9, 844–847 (1991).

    CAS  PubMed  Google Scholar 

  20. Maga, E.A., Anderson, G.B., Huang, M.C. & Murray, J.D. Expression of human lysozyme mRNA in the mammary gland of transgenic mice. Transgenic Res. 3, 36–42 (1994).

    Article  CAS  Google Scholar 

  21. Williamson, C.M., Bramley, A.J. & Lax, A.J. Expression of the lysostaphin gene of Staphylococcus simulans in a eukaryotic system. Appl. Environ. Microbiol. 60, 771–776 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maga, E.A., Anderson, G.B. & Murray, J.D. The effect of mammary gland expression of human lysozyme on the properties of milk from transgenic mice. J. Dairy Sci. 78, 2645–2652 (1995).

    Article  CAS  Google Scholar 

  23. Verdi, R.J., Barbano, D.M., Dellavalle, M.E. & Senyk, G.F. Variability in true protein, casein, nonprotein nitrogen, and proteolysis in high and low somatic cell milks. J. Dairy Sci. 70, 230–242 (1987).

    Article  CAS  Google Scholar 

  24. Whitelaw, C.B. et al. Targeting expression to the mammary gland: intronic sequences can enhance the efficiency of gene expression in transgenic mice. Transgenic Res. 1, 3–13 (1991).

    Article  CAS  Google Scholar 

  25. Wall, R.J. & Seidel, G. Jr. Transgenic farm animals—a critical analysis. Theriogenology 38, 337–357 (1992).

    Article  CAS  Google Scholar 

  26. Marais, R. et al. A cell surface tethered enzyme improves efficiency in gene-directed enzyme producing therapy. Nat. Biotechnol. 15, 1373–1377 (1997).

    Article  CAS  Google Scholar 

  27. Reiter, B. Review of the progress of dairy science: antimicrobial systems in milk. J. Dairy Res. 45, 131–147 (1978).

    Article  CAS  Google Scholar 

  28. Takahashi, N. et al. Nonspecific antibacterial factors in milk from cows immunized with human oral bacterial pathogens. J. Dairy Sci. 75, 1810–1820 (1992).

    Article  CAS  Google Scholar 

  29. Platenburg, G.J. et al. Expression of human lactoferrin in milk of transgenic mice. Transgenic Res. 3, 99–108 (1994).

    Article  CAS  Google Scholar 

  30. Yarus, S., Rosen, J.M., Cole, A.M. & Diamond, G. Production of active bovine tracheal antimicrobial peptide in milk of transgenic mice. Proc. Natl. Acad. Sci. USA 93, 14118–14121 (1996).

    Article  CAS  Google Scholar 

  31. Maga, E.A., Anderson, G.B., Cullor, J.S., Smith, W. & Murray, J.D. Antimicrobial properties of human lysozyme transgenic mouse milk. J. Food Prot. 61, 52–56 (1998).

    Article  CAS  Google Scholar 

  32. Harmon, R.J., Schanbacher, F.L., Ferguson, L.C. & Smith, K.L. Concentration of lactoferrin in milk of normal lactating cows and changes occurring during mastitis. Am. J. Vet. Res. 36, 1001–1007 (1975).

    CAS  PubMed  Google Scholar 

  33. Drews, R. et al. Proteolytic maturation of protein C upon engineering the mouse mammary gland to express furin. Proc. Natl. Acad. Sci. USA 92, 10462–10466 (1995).

    Article  CAS  Google Scholar 

  34. Chandler, R.L. Experimental bacterial mastitis in the mouse. J. Med. Microbiol. 3, 273–282 (1970).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Juli Foster, Leah Schulman, Barbara Hughes, and Francis Kinghorn for excellent technical assistance. The work was funded in part by grants from The Northeast Dairy Foods Research Center, the Vermont Dairy Promotion Council, and the New England Dairy Promotion Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Kerr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerr, D., Plaut, K., Bramley, A. et al. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nat Biotechnol 19, 66–70 (2001). https://doi.org/10.1038/83540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing