Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites

Matters Arising to this article was published on 24 February 2020

This article has been updated


The functions of many long noncoding RNAs (lncRNAs) in the human genome remain unknown owing to the lack of scalable loss-of-function screening tools. We previously used pairs of CRISPR–Cas9 (refs. 1, 2, 3) single guide RNAs (sgRNAs) for small-scale functional screening of lncRNAs4. Here we demonstrate genome-wide screening of lncRNA function using sgRNAs to target splice sites and achieve exon skipping or intron retention. Splice-site targeting outperformed a conventional CRISPR library in a negative selection screen targeting 79 ribosomal genes. Using a genome-scale library of splicing-targeting sgRNAs, we performed a screen covering 10,996 lncRNAs and identified 230 that are essential for cellular growth of chronic myeloid leukemia K562 cells. Screening GM12878 lymphoblastoid cells and HeLa cells with the same library identified cell-type-specific differences in lncRNA essentiality. Extensive validation confirmed the robustness of our approach.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Lentivirally delivered sgRNAs generate intron retention or exon skipping by disrupting splice sites.
Figure 2: Splicing-targeting enables genome-scale screening for the identification of lncRNAs essential for cell growth and proliferation.
Figure 3: Validation of candidate lncRNAs.
Figure 4: Cell type specificity of lncRNA function across multiple cell lines.

Accession codes

Primary accessions


Sequence Read Archive

Change history

  • 16 January 2019

    In the supplementary information originally posted, there were incorrect values for the GM12878 cell line in Supplementary Table 5. The error has been corrected online.


  1. 1

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Zhu, S. et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nat. Biotechnol. 34, 1279–1286 (2016).

    CAS  Article  Google Scholar 

  5. 5

    Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    CAS  Google Scholar 

  6. 6

    Wang, T., Wei, J.J., Sabatini, D.M. & Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Koike-Yusa, H., Li, Y., Tan, E.P., Del Castillo Velasco-Herrera, M. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Zhou, Y. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509, 487–491 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Ezkurdia, I. et al. Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum. Mol. Genet. 23, 5866–5878 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Rinn, J.L. & Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Quinn, J.J. & Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016).

    CAS  Article  Google Scholar 

  12. 12

    Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Lin, N. et al. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol. Cell 53, 1005–1019 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Liu, S.J. et al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science 355, eaah7111 (2017).

    Article  Google Scholar 

  16. 16

    Adamson, B., Smogorzewska, A., Sigoillot, F.D., King, R.W. & Elledge, S.J. A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat. Cell Biol. 14, 318–328 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Yuan, P. et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res. 25, 157–168 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Ulitsky, I., Shkumatava, A., Jan, C.H., Sive, H. & Bartel, D.P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147, 1537–1550 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Lim, L.P. & Burge, C.B. A computational analysis of sequence features involved in recognition of short introns. Proc. Natl. Acad. Sci. USA 98, 11193–11198 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Ren, Q. et al. A Dual-reporter system for real-time monitoring and high-throughput CRISPR/Cas9 library screening of the hepatitis C virus. Sci. Rep. 5, 8865 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Peng, J., Zhou, Y., Zhu, S. & Wei, W. High-throughput screens in mammalian cells using the CRISPR-Cas9 system. FEBS J. 282, 2089–2096 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Zhu, S., Zhou, Y. & Wei, W. Genome-wide CRISPR/Cas9 screening for high-throughput functional genomics in human cells. Methods Mol. Biol. 1656, 175–181 (2017).

    CAS  Article  Google Scholar 

  25. 25

    Matlin, A.J., Clark, F. & Smith, C.W. Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386–398 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Taggart, A.J., DeSimone, A.M., Shih, J.S., Filloux, M.E. & Fairbrother, W.G. Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo. Nat. Struct. Mol. Biol. 19, 719–721 (2012).

    CAS  Article  Google Scholar 

  27. 27

    Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Xu, H. et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 25, 1147–1157 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Heidari, N. et al. Genome-wide map of regulatory interactions in the human genome. Genome Res. 24, 1905–1917 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Muller, R.Y., Hammond, M.C., Rio, D.C. & Lee, Y.J. An Efficient method for electroporation of small interfering RNAs into ENCODE project tier 1 GM12878 and K562 cell lines. J. Biomol. Tech. 26, 142–149 (2015).

    Article  Google Scholar 

  31. 31

    Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308, 1149–1154 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Fang, Y. & Fullwood, M.J. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 14, 42–54 (2016).

    Article  Google Scholar 

  34. 34

    Joung, J. et al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature 548, 343–346 (2017).

    CAS  Article  Google Scholar 

  35. 35

    Goyal, A. et al. Challenges of CRISPR/Cas9 applications for long non-coding RNA genes. Nucleic Acids Res. 45, e12 (2017).

    Article  Google Scholar 

  36. 36

    Gilbert, L.A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Engreitz, J.M. et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539, 452–455 (2016).

    CAS  Article  Google Scholar 

  38. 38

    Li, B. & Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Leng, N. et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29, 1035–1043 (2013).

    CAS  Article  Google Scholar 

  40. 40

    Jiao, X. et al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28, 1805–1806 (2012).

    CAS  Article  Google Scholar 

Download references


We acknowledge the staff of the BIOPIC High-Throughput Sequencing Center (Peking University) for their assistance in next-generation sequencing analysis, the National Center for Protein Sciences Beijing (Peking University), and the core facilities at School of Life Sciences (Peking University) for help in fluorescence-activated cell sorting. We also acknowledge the High-performance Computing Platform of Peking University. This project was supported by funds from the National Science Foundation of China (NSFC31430025), the Beijing Advanced Innovation Center for Genomics at Peking University, and the Peking-Tsinghua Center for Life Sciences (W.W.).

Author information




W.W. conceived and supervised the project. W.W., Y.L. and Z.C. designed the experiments. Y.L., Z.C., P.X. and Y.H. performed the experiments. Y.G. designed the oligonucleotides used for ribosomal gene mutagenesis and genome-wide lncRNA library, and Z.L. designed the pgRNAs used for individual validation. Y.W., Y.G. and P.Y. performed the bioinformatics analysis. Y.L., Z.C., Y.W. and W.W. wrote the manuscript with the help of all other authors.

Corresponding author

Correspondence to Wensheng Wei.

Ethics declarations

Competing interests

A patent has been filed relating to the data presented. W.W. is a founder and scientific advisor for EdiGene.

Supplementary information

Supplementary Figures

Supplementary Figures 1–14 (PDF 12615 kb)

Life Sciences Reporting Summary (PDF 130 kb)

Supplementary Table 1

sgRNAs of splicing-targeting library on essential ribosomal genes (XLSX 287 kb)

Supplementary Table 2

sgRNA read counts and phenotypes in ribosomal gene screening (XLSX 635 kb)

Supplementary Table 3

sgRNAs of whole-genome human lncRNA library (XLSX 6458 kb)

Supplementary Table 4

sgRNA read counts in splicing-targeting screen for lncRNAs in multiple cell lines (XLSX 18380 kb)

Supplementary Table 5

Screen scores of lncRNAs by splicing-targeting screen in multiple cell lines (XLSX 2586 kb)

Supplementary Table 6

Screen scores of lncRNAs by splicing-targeting screen in multiple cell lines (generated after filtering sgRNAs with potential off-target effects) (XLSX 2655 kb)

Supplementary Table 7

Individually cloned sgRNAs and pgRNAs for validation (XLSX 20 kb)

Supplementary Code

Source code for the computational analysis of lncRNA screens described in this paper. (ZIP 2285 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Cao, Z., Wang, Y. et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat Biotechnol 36, 1203–1210 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing