Domestication of wild tomato is accelerated by genome editing

This article has been updated


Crop improvement by inbreeding often results in fitness penalties and loss of genetic diversity. We introduced desirable traits into four stress-tolerant wild-tomato accessions by using multiplex CRISPR–Cas9 editing of coding sequences, cis-regulatory regions or upstream open reading frames of genes associated with morphology, flower and fruit production, and ascorbic acid synthesis. Cas9-free progeny of edited plants had domesticated phenotypes yet retained parental disease resistance and salt tolerance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Genome editing of coding and regulatory regions of SP, SP5G, SlCLV3, SlWUS and phenotypes of T1 progeny.
Figure 2: Improvement of fruit size, nutrient content and retention of stress tolerance in CRISPR plants.

Change history

  • 05 October 2018

    In the version of this article initially published, the file with supplementary tables posted was from a different article. The correct file has now been posted.


  1. 1

    Meyer, R.S. & Purugganan, M.D. Nat. Rev. Genet. 14, 840–852 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Østerberg, J.T. et al. Trends Plant Sci. 22, 373–384 (2017).

    Article  Google Scholar 

  3. 3

    Zsögön, A., Cermak, T., Voytas, D. & Peres, L.E. Plant Sci. 256, 120–130 (2017).

    Article  Google Scholar 

  4. 4

    Zuriaga, E. et al. Genet. Resour. Crop Evol. 56, 39–51 (2008).

    Article  Google Scholar 

  5. 5

    Robbins, M.D., Darrigues, A., Sim, S.C., Masud, M.A. & Francis, D.M. Phytopathology 99, 1037–1044 (2009).

    Article  Google Scholar 

  6. 6

    Rao, E.S. et al. Euphytica 190, 215–228 (2013).

    Article  Google Scholar 

  7. 7

    Doebley, J.F., Gaut, B.S. & Smith, B.D. Cell 127, 1309–1321 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Huang, X. et al. Nature 537, 629–633 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Lin, T. et al. Nat. Genet. 46, 1220–1226 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Yin, K., Gao, C. & Qiu, J.L. Nat. Plants 3, 17107 (2017).

    CAS  Article  Google Scholar 

  11. 11

    Rodríguez-Leal, D., Lemmon, Z.H., Man, J., Bartlett, M.E. & Lippman, Z.B. Cell 171, 470–480 e8 (2017).

    Article  Google Scholar 

  12. 12

    Soyk, S. et al. Nat. Genet. 49, 162–168 (2017).

    CAS  Article  Google Scholar 

  13. 13

    Park, S.J. et al. Nat. Genet. 46, 1337–1342 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Lippman, Z. & Tanksley, S.D. Genetics 158, 413–422 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    van der Knaap, E. et al. Front. Plant Sci. 5, 227 (2014).

    Article  Google Scholar 

  16. 16

    Xu, C. et al. Nat. Genet. 47, 784–792 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Endrizzi, K., Moussian, B., Haecker, A., Levin, J.Z. & Laux, T. Plant J. 10, 967–979 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Somssich, M., Je, B.I., Simon, R. & Jackson, D. Development 143, 3238–3248 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Cˇermák, T. et al. Plant Cell 29, 1196–1217 (2017).

    Article  Google Scholar 

  20. 20

    Zhang, H.W. et al. Nat. Biotechnol. 36, 894–898 (2018).

    CAS  Article  Google Scholar 

  21. 21

    Xing, H.L. et al. BMC Plant Biol. 14, 327 (2014).

    Article  Google Scholar 

  22. 22

    Van Eck, J., Kirk, D.D. & Walmsley, A.M. Methods Mol. Biol. 343, 459–473 (2006).

    PubMed  Google Scholar 

  23. 23

    Brooks, C., Nekrasov, V., Lippman, Z.B. & Van Eck, J. Plant Physiol. 166, 1292–1297 (2014).

    Article  Google Scholar 

  24. 24

    Shan, Q., Wang, Y., Li, J. & Gao, C. Nat. Protoc. 9, 2395–2410 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Yang, W. & Francis, D.M. J. Am. Soc. Hortic. Sci. 130, 716–721 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Liu, H. et al. Mol. Plant 10, 530–532 (2017).

    CAS  Article  Google Scholar 

Download references


We thank W. Yang and N. Li (China Agricultural University) for providing the bacterial spot race T3 strain and for assistance with inoculation, and D. Bartlem (KWS) for critical reading and editing of an earlier draft of this manuscript. We also thank Y. Wang (Institute of Genetics and Developmental Biology, CAS) for help with Figure 1a. We thank L. Yan and Y. Li for assistance with tissue culture. This work was supported by grants from the National Key Research and Development Program of China (2016YFD0101804), the National Science Foundation of China (31788103 and 31420103912) and the Chinese Academy of Sciences (QYZDY-SSW-SMC030 and GJHZ1602) to C.G., and the Thousand Talents Plan to C.X.

Author information




C.X. and C.G. designed the experiments; T.L., X.Y., Y.Y. and X.S. performed most of the experiments; X.Z. and W.D. generated transgenic plants. T.L., X.Y., Y.Y., X.S. and H.Z. analyzed the results; C.X. and C.G. supervised the project; C.X. and C.G. wrote the manuscript.

Corresponding authors

Correspondence to Caixia Gao or Cao Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 2568 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Supplementary Sequences

The sequences of SP, SP5G, SlCLV3, SlWUS and SlGGP1 in S. pimpinellifolium (LA1589) (PDF 517 kb)

Supplementary Tables

Supplementary Tables 1–8 (PDF 1312 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, T., Yang, X., Yu, Y. et al. Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36, 1160–1163 (2018).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing