Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Domestication of wild tomato is accelerated by genome editing

This article has been updated

Abstract

Crop improvement by inbreeding often results in fitness penalties and loss of genetic diversity. We introduced desirable traits into four stress-tolerant wild-tomato accessions by using multiplex CRISPR–Cas9 editing of coding sequences, cis-regulatory regions or upstream open reading frames of genes associated with morphology, flower and fruit production, and ascorbic acid synthesis. Cas9-free progeny of edited plants had domesticated phenotypes yet retained parental disease resistance and salt tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genome editing of coding and regulatory regions of SP, SP5G, SlCLV3, SlWUS and phenotypes of T1 progeny.
Figure 2: Improvement of fruit size, nutrient content and retention of stress tolerance in CRISPR plants.

Similar content being viewed by others

Change history

  • 05 October 2018

    In the version of this article initially published, the file with supplementary tables posted was from a different article. The correct file has now been posted.

References

  1. Meyer, R.S. & Purugganan, M.D. Nat. Rev. Genet. 14, 840–852 (2013).

    Article  CAS  Google Scholar 

  2. Østerberg, J.T. et al. Trends Plant Sci. 22, 373–384 (2017).

    Article  Google Scholar 

  3. Zsögön, A., Cermak, T., Voytas, D. & Peres, L.E. Plant Sci. 256, 120–130 (2017).

    Article  Google Scholar 

  4. Zuriaga, E. et al. Genet. Resour. Crop Evol. 56, 39–51 (2008).

    Article  Google Scholar 

  5. Robbins, M.D., Darrigues, A., Sim, S.C., Masud, M.A. & Francis, D.M. Phytopathology 99, 1037–1044 (2009).

    Article  Google Scholar 

  6. Rao, E.S. et al. Euphytica 190, 215–228 (2013).

    Article  Google Scholar 

  7. Doebley, J.F., Gaut, B.S. & Smith, B.D. Cell 127, 1309–1321 (2006).

    Article  CAS  Google Scholar 

  8. Huang, X. et al. Nature 537, 629–633 (2016).

    Article  CAS  Google Scholar 

  9. Lin, T. et al. Nat. Genet. 46, 1220–1226 (2014).

    Article  CAS  Google Scholar 

  10. Yin, K., Gao, C. & Qiu, J.L. Nat. Plants 3, 17107 (2017).

    Article  CAS  Google Scholar 

  11. Rodríguez-Leal, D., Lemmon, Z.H., Man, J., Bartlett, M.E. & Lippman, Z.B. Cell 171, 470–480 e8 (2017).

    Article  Google Scholar 

  12. Soyk, S. et al. Nat. Genet. 49, 162–168 (2017).

    Article  CAS  Google Scholar 

  13. Park, S.J. et al. Nat. Genet. 46, 1337–1342 (2014).

    Article  CAS  Google Scholar 

  14. Lippman, Z. & Tanksley, S.D. Genetics 158, 413–422 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. van der Knaap, E. et al. Front. Plant Sci. 5, 227 (2014).

    Article  Google Scholar 

  16. Xu, C. et al. Nat. Genet. 47, 784–792 (2015).

    Article  CAS  Google Scholar 

  17. Endrizzi, K., Moussian, B., Haecker, A., Levin, J.Z. & Laux, T. Plant J. 10, 967–979 (1996).

    Article  CAS  Google Scholar 

  18. Somssich, M., Je, B.I., Simon, R. & Jackson, D. Development 143, 3238–3248 (2016).

    Article  CAS  Google Scholar 

  19. Cˇermák, T. et al. Plant Cell 29, 1196–1217 (2017).

    Article  Google Scholar 

  20. Zhang, H.W. et al. Nat. Biotechnol. 36, 894–898 (2018).

    Article  CAS  Google Scholar 

  21. Xing, H.L. et al. BMC Plant Biol. 14, 327 (2014).

    Article  Google Scholar 

  22. Van Eck, J., Kirk, D.D. & Walmsley, A.M. Methods Mol. Biol. 343, 459–473 (2006).

    PubMed  Google Scholar 

  23. Brooks, C., Nekrasov, V., Lippman, Z.B. & Van Eck, J. Plant Physiol. 166, 1292–1297 (2014).

    Article  Google Scholar 

  24. Shan, Q., Wang, Y., Li, J. & Gao, C. Nat. Protoc. 9, 2395–2410 (2014).

    Article  CAS  Google Scholar 

  25. Yang, W. & Francis, D.M. J. Am. Soc. Hortic. Sci. 130, 716–721 (2005).

    Article  CAS  Google Scholar 

  26. Liu, H. et al. Mol. Plant 10, 530–532 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Yang and N. Li (China Agricultural University) for providing the bacterial spot race T3 strain and for assistance with inoculation, and D. Bartlem (KWS) for critical reading and editing of an earlier draft of this manuscript. We also thank Y. Wang (Institute of Genetics and Developmental Biology, CAS) for help with Figure 1a. We thank L. Yan and Y. Li for assistance with tissue culture. This work was supported by grants from the National Key Research and Development Program of China (2016YFD0101804), the National Science Foundation of China (31788103 and 31420103912) and the Chinese Academy of Sciences (QYZDY-SSW-SMC030 and GJHZ1602) to C.G., and the Thousand Talents Plan to C.X.

Author information

Authors and Affiliations

Authors

Contributions

C.X. and C.G. designed the experiments; T.L., X.Y., Y.Y. and X.S. performed most of the experiments; X.Z. and W.D. generated transgenic plants. T.L., X.Y., Y.Y., X.S. and H.Z. analyzed the results; C.X. and C.G. supervised the project; C.X. and C.G. wrote the manuscript.

Corresponding authors

Correspondence to Caixia Gao or Cao Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 2568 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Supplementary Sequences

The sequences of SP, SP5G, SlCLV3, SlWUS and SlGGP1 in S. pimpinellifolium (LA1589) (PDF 517 kb)

Supplementary Tables

Supplementary Tables 1–8 (PDF 1312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Yang, X., Yu, Y. et al. Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36, 1160–1163 (2018). https://doi.org/10.1038/nbt.4273

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.4273

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research