Boosting the power of single-cell analysis

Article metrics

Data sets from different single-cell RNA-seq experiments are combined with reduced technical error.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1

References

  1. 1

    Haghverdi, L., Lun, A.T.L., Morgan, M.D. & Marioni, J.C. Nat. Biotechnol. 36, 421–427 (2018).

  2. 2

    Butler, A. Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Nat. Biotechnol. 36, 411–420 (2018).

  3. 3

    Junker, J.P. & van Oudenaarden, A. Cell 157, 8–11 (2014).

  4. 4

    Wen, L. & Tang, F. Genome Biol. 17, 71 (2016).

  5. 5

    Regev, A. et al. eLife 6, e27041 (2017).

  6. 6

    Ritchie, M.E. et al. Nucleic Acids Res. 43, e47 (2015).

  7. 7

    Johnson, W.E., Li, C. & Rabinovic, A. Biostatistics 8, 118–127 (2007).

  8. 8

    Kelsey, G., Stegle, O. & Reik, W. Science 358, 69–75 (2017).

  9. 9

    Wen, L. & Tang, F. Mol. Aspects Med. 59, 62–69 (2018).

Download references

Author information

Correspondence to Lu Wen or Fuchou Tang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wen, L., Tang, F. Boosting the power of single-cell analysis. Nat Biotechnol 36, 408–409 (2018) doi:10.1038/nbt.4131

Download citation

Further reading