Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration

Abstract

Age-related macular degeneration (AMD) remains a major cause of blindness, with dysfunction and loss of retinal pigment epithelium (RPE) central to disease progression. We engineered an RPE patch comprising a fully differentiated, human embryonic stem cell (hESC)–derived RPE monolayer on a coated, synthetic basement membrane. We delivered the patch, using a purpose-designed microsurgical tool, into the subretinal space of one eye in each of two patients with severe exudative AMD. Primary endpoints were incidence and severity of adverse events and proportion of subjects with improved best-corrected visual acuity of 15 letters or more. We report successful delivery and survival of the RPE patch by biomicroscopy and optical coherence tomography, and a visual acuity gain of 29 and 21 letters in the two patients, respectively, over 12 months. Only local immunosuppression was used long-term. We also present the preclinical surgical, cell safety and tumorigenicity studies leading to trial approval. This work supports the feasibility and safety of hESC-RPE patch transplantation as a regenerative strategy for AMD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of hESC-derived RPE for the manufacture of an advanced therapeutic medicinal product (ATMP) to treat AMD.
Figure 2: Characterization of hESC-derived RPE.
Figure 3: Preclinical mouse teratoma and pig transplantation studies.
Figure 4: Case 1.
Figure 5: Case 2.
Figure 6: Sequences of color photographs of the transplanted patch in cases 1 and 2.
Figure 7: Best-corrected visual acuity and reading speed in cases 1 and 2 (a) BCVA over 12 months for patient 1.

Similar content being viewed by others

References

  1. Atala, A. Human embryonic stem cells: early hints on safety and efficacy. Lancet 379, 689–690 (2012).

    Article  Google Scholar 

  2. Carr, A.J. et al. Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci. 36, 385–395 (2013).

    Article  CAS  Google Scholar 

  3. Nazari, H. et al. Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Prog. Retin. Eye Res. 48, 1–39 (2015).

    Article  CAS  Google Scholar 

  4. Bharti, K. et al. Developing cellular therapies for retinal degenerative diseases. Invest. Ophthalmol. Vis. Sci. 55, 1191–1202 (2014).

    Article  Google Scholar 

  5. Bhutto, I. & Lutty, G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol. Aspects Med. 33, 295–317 (2012).

    Article  CAS  Google Scholar 

  6. Rosenfeld, P.J. et al. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 355, 1419–1431 (2006).

    Article  CAS  Google Scholar 

  7. Muthiah, M.N. et al. Adaptive optics imaging shows rescue of macula cone photoreceptors. Ophthalmology 121, 430–431.e3 (2014).

    Article  Google Scholar 

  8. Schwartz, S.D. et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385, 509–516 (2015).

    Article  Google Scholar 

  9. Mandai, M. et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 376, 1038–1046 (2017).

    Article  CAS  Google Scholar 

  10. Vugler, A. et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp. Neurol. 214, 347–361 (2008).

    Article  CAS  Google Scholar 

  11. Haruta, M. et al. In vitro and in vivo characterization of pigment epithelial cells differentiated from primate embryonic stem cells. Invest. Ophthalmol. Vis. Sci. 45, 1020–1025 (2004).

    Article  Google Scholar 

  12. International Stem Cell Initiative. et al. Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat. Biotechnol. 25, 803–816 (2007).

  13. Klimanskaya, I. et al. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6, 217–245 (2004).

    Article  CAS  Google Scholar 

  14. Idelson, M. et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5, 396–408 (2009).

    Article  CAS  Google Scholar 

  15. Skottman, H., Dilber, M.S. & Hovatta, O. The derivation of clinical-grade human embryonic stem cell lines. FEBS Lett. 580, 2875–2878 (2006).

    Article  CAS  Google Scholar 

  16. Allegrucci, C. et al. Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Hum. Mol. Genet. 16, 1253–1268 (2007).

    Article  CAS  Google Scholar 

  17. Lund, R.D. et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8, 189–199 (2006).

    Article  CAS  Google Scholar 

  18. Sparrow, J.R. & Duncker, T. Fundus autofluorescence and RPE lipofuscin in age-related macular degeneration. J. Clin. Med. 3, 1302–1321 (2014).

    Article  Google Scholar 

  19. Holz, F.G., Schmitz-Valckenberg, S., Spaide, R.F. & Bird, A.C. (eds.) The Atlas of Fundus Autofluorescence Imaging (Springer, 2007).

  20. Bressler, N.M. et al. Submacular Surgery Trials (SST) Research Group. Surgery for hemorrhagic choroidal neovascular lesions of age-related macular degeneration: ophthalmic findings: SST report no. 13. Ophthalmology 111, 1993–2006 (2004).

    Article  Google Scholar 

  21. Amer, M.H., White, L.J. & Shakesheff, K.M. The effect of injection using narrow-bore needles on mammalian cells: administration and formulation considerations for cell therapies. J. Pharm. Pharmacol. 67, 640–650 (2015).

    Article  CAS  Google Scholar 

  22. Tezel, T.H., Del Priore, L.V. & Kaplan, H.J. Reengineering of aged Bruch's membrane to enhance retinal pigment epithelium repopulation. Invest. Ophthalmol. Vis. Sci. 45, 3337–3348 (2004).

    Article  Google Scholar 

  23. Diniz, B. et al. Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest. Ophthalmol. Vis. Sci. 54, 5087–5096 (2013).

    Article  Google Scholar 

  24. Stanga, P.E. et al. Retinal pigment epithelium translocation after choroidal neovascular membrane removal in age-related macular degeneration. Ophthalmology 109, 1492–1498 (2002).

    Article  Google Scholar 

  25. van Zeeburg, E.J., Maaijwee, K.J., Missotten, T.O., Heimann, H. & van Meurs, J.C. A free retinal pigment epithelium-choroid graft in patients with exudative age-related macular degeneration: results up to 7 years. Am. J. Ophthalmol. 153, 120–7 e2 (2012).

    Article  Google Scholar 

  26. Chen, F.K. et al. Long-term visual and microperimetry outcomes following autologous retinal pigment epithelium choroid graft for neovascular age-related macular degeneration. Clin. Experiment. Ophthalmol. 37, 275–285 (2009).

    Article  Google Scholar 

  27. van Romunde, S.H.M., Polito, A., Peroglio Deiro, A., Guerriero, M. & Pertile, G. Retinal pigment epithelium-choroid graft with a peripheral retinotomy for exudative age-related macular degeneration: long-term outcome. Retina doi: 10.1097/IAE.0000000000001945 (2017).

  28. Cereda, M.G., Parolini, B., Bellesini, E. & Pertile, G. Surgery for CNV and autologous choroidal RPE patch transplantation: exposing the submacular space. Graefes Arch. Clin. Exp. Ophthalmol. 248, 37–47 (2010).

    Article  Google Scholar 

  29. Uppal, G. et al. New algorithm for assessing patient suitability for macular translocation surgery. Clin. Experiment. Ophthalmol. 35, 448–457 (2007).

    Article  Google Scholar 

  30. Algvere, P.V., Gouras, P. & Dafgard Kopp, E. Long-term outcome of RPE allografts in non-immunosuppressed patients with AMD. Eur. J. Ophthalmol. 9, 217–30 (1999).

    Article  CAS  Google Scholar 

  31. Wang, S. et al. Morphological and functional rescue in RCS rats after RPE cell line transplantation at a later stage of degeneration. Invest. Ophthalmol. Vis. Sci. 49, 416–421 (2008).

    Article  Google Scholar 

  32. Lu, B. et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 27, 2126–2135 (2009).

    Article  CAS  Google Scholar 

  33. Pertile, G. & Claes, C. Macular translocation with 360 degree retinotomy for management of age-related macular degeneration with subfoveal choroidal neovascularization. Am. J. Ophthalmol. 134, 560–565 (2002).

    Article  Google Scholar 

  34. Chen, F.K. et al. A comparison of macular translocation with patch graft in neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 50, 1848–1855 (2009).

    Article  Google Scholar 

  35. Hewitt, Z.A., Amps, K.J. & Moore, H.D. Derivation of GMP raw materials for use in regenerative medicine: hESC-based therapies, progress toward clinical application. Clin. Pharmacol. Ther. 82, 448–452 (2007).

    Article  CAS  Google Scholar 

  36. Carr, A.J. et al. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol. Vis. 15, 283–295 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mao, Y. & Finnemann, S.C. Analysis of photoreceptor outer segment phagocytosis by RPE cells in culture. Methods Mol. Biol. 935, 285–295 (2013).

    Article  CAS  Google Scholar 

  38. Ramsden, C.M. et al. Rescue of the MERTK phagocytic defect in a human iPSC disease model using translational read-through inducing drugs. Sci. Rep. 7, 51 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge H. Moore, Stem Cell Derivation Facility, Centre for Stem Cell Biology (CSCB), University of Sheffield for derivation of the original SHEF-1 hESC line and P. Keane and M. Cheetham for comments on the paper. We thank R. McKernan for support and input throughout the project. L.d.C. and P.J.C. received the following grants and donations and would like to acknowledge that they were used to fund the studies reported in this article: Anonymous Donor, USA, Establishment of The London Project to Cure Blindness - Donation. Lincy Foundation, USA, The London Project To Cure Blindness: Funding Towards The Production Of A Cell Based Therapy For Late Stage Age-Related Macular Degeneration - P12761. Macular Disease Society Studentship – Donation. MRC, Stem Cell Based Treatment Strategy For Age-Related Macular Degeneration (AMD) - G1000730. CIRM (California Institute of Regenerative Medicine) LA1_C2-02086. Pfizer Inc, The Development Plan For A Phase I/IIa Clinical Trial Implanting HESC Derived RPE for AMD - PF-05406388. Moorfields Biomedical Research Centre, National Institute for Health Research (NIHR) - BRC2_011. The Michael Uren Foundation R170010A.

Author information

Authors and Affiliations

Authors

Contributions

L.d.C., P.T.L., P.W., and P.J.C. designed all of the animal studies and the clinical study, developed the methodology for these studies, collected the data, performed the analysis, and wrote the manuscript. L.d.C. performed the pig and human surgery. K.F., J.K., A.A., A.Ve., J.T.D., B.N., S.M.H., S.B.G., A.-J.F.C., A.Vu., C.M.R., M.B., M.F., J.S., T.H., and A.W. developed, isolated, and prepared the hESC-RPE and performed the engineering of the hESC-RPE patch; and assisted in designing and conducting the mouse and pig studies, collecting the data, performing the analysis, and writing the manuscript. A.A. and A.Vu. performed the mouse surgery. O.G., Y.H.L., A.A., A.T., G.F., M.W., A.G.R., G.E.H. and M.S.S. assisted in designing the clinical study, developing the methodology, collecting the data, performing the analysis, and writing the manuscript.

Corresponding author

Correspondence to Lyndon da Cruz.

Ethics declarations

Competing interests

J.K., M.B., M.F., J.S., T.H., G.F., M.W., P.T.L., and P.W. were all employees of Pfizer during the period of this clinical trial. This study was sponsored by Pfizer Inc. L.d.C. and P.J.C. are named on two patents lodged by University College London Business. They are Patent Application No. PCT/GB2009/000917 (for the patch) and International Patent Application No. PCT/GB2011/051262 (for the surgical tool).

Integrated supplementary information

Supplementary Figure 1 The purpose-built introducer tool

The device for introducing the therapeutic patch into the sub-retinal space. The device consists of a Handle containing a mechanism driven by the Wheel which advances a flexible Rod through the Shaft that in turn pushes the therapeutic patch out of the Tip of the device. The surgeon rolls the Wheel forward to advance the Rod.

Supplementary Figure 2 TRA-1-60 flow cytometry on SHEF1.3 hESC, P0 and P1 RPE (Fluorophore - TO-PRO®-3)

A: Forward scatter (FSC) / side scatter (SSC) plots of hESC, P0 and P1 RPE. hESC and RPE lie in slightly different positions on this plot, with RPE being smaller (FSC) and more granular (SSC) than hESC.

B: Overlays of IgM (black) and TRA-1-60 (red) staining for hESC, P0 RPE and P1 RPE. Positive staining is clearly visible for hESC, whereas the isotype control (IgM, negative) and TRA-1-60 samples clearly overlay for both P0 and P1 RPE. Percentages indicate the percentage of positive events occurring within the gate shown (M12, M18 or M16 in hESC, P0 and P1 RPE plots respectively).

C: Percentage positive events recorded for IgM isotype control and TRA-1-60 in hESC, P0 RPE and P1 RPE. Average values are hESC 0.08% IgM, 93.5% TRA-1-60; P0 RPE 0.10% IgM, 0.30% TRA-1-60 and P1 RPE 0.09% IgM and 0.32% TRA-1-60. All values except for the TRA-1-60 stained hESC are below the lower limit of detection (1.03%).

D: An example of the 0.3% of TRA-1-60 events that show slightly higher staining than the isotype control in P1 RPE (even though these are within the background limits of the assay) displayed on a FSC/SSC plot. (For example taking all TRA-1-60 events in gate M16 in figure 2B and displaying them as FSC/SSC). This is compared to a representative hESC FSC/SSC plot to show that the majority of these events are separated from hESC based on SSC ie they are more granular and very unlikely to be hESC cells.

Supplementary Figure 3 Propidium iodide (PI) staining of SHEF1.3 hESC dissociated and seeded into RPE culture conditions (Fluorophore - TO-PRO®-3)

A & B: On day 0 over 95% of hESC cells seeded into DMEM/CellStart (RPE conditions) or mTeSR1/Matrigel were viable as they excluded PI (A). By 2 days post seeding on average 96%±1% (n=5) of cells in DMEM conditions, including both adherent cells and those in the media (as very few actually adhered) were dead or dying, as judged by flow cytometry for PI. The same was observed on day 4 (97%±0.6% dead, n=3). By contrast, around 40-50% of cells in mTeSR conditions were dead at 2 days post seeding, demonstrating that under these conditions around half of SHEF1.3 hESC survive.

C: Virtually all SHEF1.3 hESC seeded into DMEM/CellStart (RPE culture conditions) appear rounded and dead as well as staining positively for PI (red). By contrast, though dead cells are apparent, many of the cells seeded into mTeSR/Matrigel (MGL) conditions appear morphologically viable and do not stain with PI.

D and E: Blue = HOECHST (nuclei) and green = TRA-1-60 (D) or Ki67 (E). By 6 weeks post seeding, a small number of live cells were occasionally visible in DMEM/CellStart conditions (4 out of 9 experiments). These did not appear morphologically like SHEF1.3 hESC cells (compare the large, elongated cells in D and E with single cell hESC on Matrigel (MGL) in C. These did not stain positively for TRA-1-60 (compare D with hESC on MGL in figure 4C) or KI67 (compare CellStart and MGL seeded cells in E).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cruz, L., Fynes, K., Georgiadis, O. et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 36, 328–337 (2018). https://doi.org/10.1038/nbt.4114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.4114

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research