Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineered promoters enable constant gene expression at any copy number in bacteria

An Author Correction to this article was published on 07 April 2022

This article has been updated


The internal environment of growing cells is variable and dynamic, making it difficult to introduce reliable parts, such as promoters, for genetic engineering. Here, we applied control-theoretic ideas to design promoters that maintained constant levels of expression at any copy number. Theory predicts that independence to copy number can be achieved by using an incoherent feedforward loop (iFFL) if the negative regulation is perfectly non-cooperative. We engineered iFFLs into Escherichia coli promoters using transcription-activator-like effectors (TALEs). These promoters had near-identical expression in different genome locations and plasmids, even when their copy number was perturbed by genomic mutations or changes in growth medium composition. We applied the stabilized promoters to show that a three-gene metabolic pathway to produce deoxychromoviridans could retain function without re-tuning when the stabilized-promoter-driven genes were moved from a plasmid into the genome.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Stabilized promoter design.
Figure 2: Stabilized promoters compensate for changes in copy number.
Figure 3: Stabilized promoters reduce the effect of perturbations that affect copy number.
Figure 4: Copy-number stabilization of a small-molecule sensor and metabolic pathway.

Accession codes

Primary accessions

NCBI Reference Sequence

Change history


  1. Keasling, J.D. Synthetic biology and the development of tools for metabolic engineering. Metab. Eng.14, 189–195 (2012).

    CAS  PubMed  Google Scholar 

  2. Pfleger, B.F., Pitera, D.J., Smolke, C.D. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol.24, 1027–1032 (2006).

    CAS  PubMed  Google Scholar 

  3. Torella, J.P. et al. Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly. Nucleic Acids Res.42, 681–689 (2014).

    CAS  PubMed  Google Scholar 

  4. Li, G.-W., Burkhardt, D., Gross, C. & Weissman, J.S. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources. Cell157, 624–635 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Haseltine, E.L. & Arnold, F.H. Synthetic gene circuits: design with directed evolution. Annu. Rev. Biophys. Biomol. Struct.36, 1–19 (2007).

    CAS  PubMed  Google Scholar 

  6. Smanski, M.J. et al. Functional optimization of gene clusters by combinatorial design and assembly. Nat. Biotechnol.32, 1241–1249 (2014).

    CAS  PubMed  Google Scholar 

  7. Kosuri, S. et al. Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc. Natl. Acad. Sci. USA110, 14024–14029 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nielsen, A.A., Segall-Shapiro, T.H. & Voigt, C.A. Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. Curr. Opin. Chem. Biol.17, 878–892 (2013).

    CAS  PubMed  Google Scholar 

  9. Farasat, I. et al. Efficient search, mapping and optimization of multiprotein genetic systems in diverse bacteria. Mol. Syst. Biol.10, 731 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Kittleson, J.T., Wu, G.C. & Anderson, J.C. Successes and failures in modular genetic engineering. Curr. Opin. Chem. Biol.16, 329–336 (2012).

    CAS  PubMed  Google Scholar 

  11. Cardinale, S. & Arkin, A.P. Contextualizing context for synthetic biology—identifying causes of failure of synthetic biological systems. Biotechnol. J.7, 856–866 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Arkin, A.P. A wise consistency: engineering biology for conformity, reliability, predictability. Curr. Opin. Chem. Biol.17, 893–901 (2013).

    CAS  PubMed  Google Scholar 

  13. Carrier, T., Jones, K.L. & Keasling, J.D. mRNA stability and plasmid copy-number effects on gene expression from an inducible promoter system. Biotechnol. Bioeng.59, 666–672 (1998).

    CAS  PubMed  Google Scholar 

  14. Wong Ng, J., Chatenay, D., Robert, J. & Poirier, M.G. Plasmid copy-number noise in monoclonal populations of bacteria. Phys. Rev. E81, 011909 (2010).

    Google Scholar 

  15. Lopilato, J., Bortner, S. & Beckwith, J. Mutations in a new chromosomal gene of Escherichia coli K-12, pcnB, reduce plasmid copy number of pBR322 and its derivatives. Mol. Gen. Genet.205, 285–290.

  16. Węgrzyn, G. Replication of plasmids during bacterial response to amino acid starvation. Plasmid41, 1–16 (1999).

    PubMed  Google Scholar 

  17. Lin-Chao, S. & Bremer, H. Effect of the bacterial growth rate on replication control of plasmid pBR322 in. Escherichia coli. Mol. Gen. Genet.203, 143–149.

  18. Lin-Chao, S., Chen, W.-T. & Wong, T.-T. High copy number of the pUC plasmid results from a Rom–Rop-suppressible point mutation in RNA II. Mol. Microbiol.6, 3385–3393 (1992).

    CAS  PubMed  Google Scholar 

  19. Stueber, D. & Bujard, H. Transcription from efficient promoters can interfere with plasmid replication and diminish expression of plasmid-specified genes. EMBO J.1, 1399–1404 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheah, U.E., Weigand, W.A. & Stark, B.C. Effects of recombinant plasmid size on cellular processes in Escherichia coli. Plasmid18, 127–134 (1987).

    CAS  PubMed  Google Scholar 

  21. Corchero, J.L. & Villaverde, A. Plasmid maintenance in Escherichia coli recombinant cultures is dramatically, steadily and specifically influenced by features of the encoded proteins. Biotechnol. Bioeng.58, 625–632 (1998).

    CAS  PubMed  Google Scholar 

  22. Chandler, M.G. & Pritchard, R.H. The effect of gene concentration and relative gene dosage on gene output in Escherichia coli. Mol. Gen. Genet.138, 127–141 (1975).

    CAS  PubMed  Google Scholar 

  23. Block, D.H.S., Hussein, R., Liang, L.W. & Lim, H.N. Regulatory consequences of gene translocation in bacteria. Nucleic Acids Res.40, 8979–8992 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kittleson, J.T., Cheung, S. & Anderson, J.C. Rapid optimization of gene dosage in E. coli using DIAL strains. J. Biol. Eng.5, 10 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma, W., Trusina, A., El-Samad, H., Lim, W.A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell138, 760–773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bleris, L. et al. Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol. Syst. Biol.7, 519 (2011).

    PubMed  PubMed Central  Google Scholar 

  27. Ang, J., Bagh, S., Ingalls, B.P. & McMillen, D.R. Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network. J. Theor. Biol.266, 723–738 (2010).

    PubMed  Google Scholar 

  28. Shen-Orr, S.S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet.31, 64–68 (2002).

    CAS  PubMed  Google Scholar 

  29. Mangan, S. & Alon, U. Structure and function of the feedforward-loop network motif. Proc. Natl. Acad. Sci. USA100, 11980–11985 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Klumpp, S., Zhang, Z. & Hwa, T. Growth-rate-dependent global effects on gene expression in bacteria. Cell139, 1366–1375 (2009).

    PubMed  PubMed Central  Google Scholar 

  31. Rogers, J.M. et al. Context influences on TALE–DNA binding revealed by quantitative profiling. Nat. Commun.6, 7440 (2015).

    CAS  PubMed  Google Scholar 

  32. Copeland, M.F., Politz, M.C., Johnson, C.B., Markley, A.L. & Pfleger, B.F. A transcription-activator-like effector (TALE) induction system mediated by proteolysis. Nat. Chem. Biol.12, 254–260 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol.29, 149–153 (2011).

    PubMed  PubMed Central  Google Scholar 

  34. Jack, B.R. et al. Predicting the genetic stability of engineered DNA sequences with the EFM calculator. ACS Synth. Biol.4, 939–943 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Peterson, J. & Phillips, G.J. New pSC101-derivative cloning vectors with elevated copy numbers. Plasmid59, 193–201 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ho, T.Q., Zhong, Z., Aung, S. & Pogliano, J. Compatible bacterial plasmids are targeted to independent cellular locations in Escherichia coli. EMBO J.21, 1864–1872 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Martínez-García, E., Aparicio, T., de Lorenzo, V. & Nikel, P.I. New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories. Front. Bioeng. Biotechnol.2, 46 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. Fernandez-Rodriguez, J., Yang, L., Gorochowski, T.E., Gordon, D.B. & Voigt, C.A. Memory and combinatorial logic based on DNA inversions: dynamics and evolutionary stability. ACS Synth. Biol.4, 1361–1372 (2015).

    CAS  PubMed  Google Scholar 

  39. Pósfai, G. et al. Emergent properties of reduced-genome Escherichia coli. Science312, 1044–1046 (2006).

    PubMed  Google Scholar 

  40. Schmidt, F.R. Optimization and scale up of industrial fermentation processes. Appl. Microbiol. Biotechnol.68, 425–435 (2005).

    CAS  PubMed  Google Scholar 

  41. Moser, F. et al. Genetic circuit performance under conditions relevant for industrial bioreactors. ACS Synth. Biol.1, 555–564 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sontag, E.D. Mathematical Control Theory. Deterministic Finite Dimensional Systems 2nd ed. (Springer-Verlag, New York, 1998).

  43. Voigt, C.A. Genetic parts to program bacteria. Curr. Opin. Biotechnol.17, 548–557 (2006).

    CAS  PubMed  Google Scholar 

  44. Stanton, B.C. et al. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat. Chem. Biol.10, 99–105 (2014).

    CAS  PubMed  Google Scholar 

  45. Goentoro, L., Shoval, O., Kirschner, M.W. & Alon, U. The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol. Cell36, 894–899 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mangan, S., Zaslaver, A. & Alon, U. The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. J. Mol. Biol.334, 197–204 (2003).

    CAS  PubMed  Google Scholar 

  47. Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell26, 753–767 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sakuma, T. et al. Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci. Rep.3, 3379 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Lee, C., Kim, J., Shin, S.G. & Hwang, S. Absolute and relative qPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol.123, 273–280 (2006).

    CAS  Google Scholar 

  50. Das, S., Noe, J.C., Paik, S. & Kitten, T. An improved arbitrary primed-PCR method for rapid characterization of transposon insertion sites. J. Microbiol. Methods63, 89–94 (2005).

    CAS  PubMed  Google Scholar 

Download references


This work was supported by US Office of Naval Research Multidisciplinary University Research Initiative grant no. N00014-16-1-2388 (T.H.S.-S., E.D.S., and C.A.V.), US National Institutes of Health National Institute of General Medical Sciences Center for Integrated Synthetic Biology grant no. P50-GM098792 (T.H.S.-S. and C.A.V.), US National Institutes of Standards and Technology grant no. 70-NANB16H164 (T.H.S.-S. and C.A.V.), US National Science Foundation Synthetic Biology Engineering Research Center grant no. EEC-0540879 (C.A.V.), and a Fannie and John Hertz Fellowship (T.H.S.-S.).

Author information

Authors and Affiliations



T.H.S.-S., E.D.S. and C.A.V. conceived the study and designed the experiments; T.H.S.-S. performed the experiments and analyzed the data; and T.H.S.-S., E.D.S. and C.A.V. wrote the manuscript.

Corresponding author

Correspondence to Christopher A Voigt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–22, Supplementary Tables 1–3, and Supplementary Notes 1 and 2 (PDF 6864 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Segall-Shapiro, T., Sontag, E. & Voigt, C. Engineered promoters enable constant gene expression at any copy number in bacteria. Nat Biotechnol 36, 352–358 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing