Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep learning massively accelerates super-resolution localization microscopy

Abstract

The speed of super-resolution microscopy methods based on single-molecule localization, for example, PALM and STORM, is limited by the need to record many thousands of frames with a small number of observed molecules in each. Here, we present ANNA-PALM, a computational strategy that uses artificial neural networks to reconstruct super-resolution views from sparse, rapidly acquired localization images and/or widefield images. Simulations and experimental imaging of microtubules, nuclear pores, and mitochondria show that high-quality, super-resolution images can be reconstructed from up to two orders of magnitude fewer frames than usually needed, without compromising spatial resolution. Super-resolution reconstructions are even possible from widefield images alone, though adding localization data improves image quality. We demonstrate super-resolution imaging of >1,000 fields of view containing >1,000 cells in 3 h, yielding an image spanning spatial scales from 20 nm to 2 mm. The drastic reduction in acquisition time and sample irradiation afforded by ANNA-PALM enables faster and gentler high-throughput and live-cell super-resolution imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of ANNA-PALM.
Figure 2: Validation of ANNA-PALM on simulated images.
Figure 3: ANNA-PALM imaging of microtubules.
Figure 4: High-throughput imaging with ANNA-PALM.
Figure 5: Robustness of ANNA-PALM to experimental perturbations.
Figure 6: ANNA-PALM reconstructions of nuclear pores and mitochondria.

Similar content being viewed by others

References

  1. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Legant, W.R. et al. High-density three-dimensional localization microscopy across large volumes. Nat. Methods 13, 359–365 (2016).

    Article  PubMed  Google Scholar 

  4. Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Jones, S.A., Shim, S.H., He, J. & Zhuang, X. Fast, three-dimensional super-resolution imaging of live cells. Nat. Methods 8, 499–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Huang, F. et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Carlton, P.M. et al. Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc. Natl. Acad. Sci. USA 107, 16016–16022 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Stelzer, E.H.K. Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods 12, 23–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, F., Schwartz, S.L., Byars, J.M. & Lidke, K.A. Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed. Opt. Express 2, 1377–1393 (2011).

    Article  PubMed  Google Scholar 

  10. Burnette, D.T., Sengupta, P., Dai, Y., Lippincott-Schwartz, J. & Kachar, B. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc. Natl. Acad. Sci. USA 108, 21081–21086 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Simonson, P.D., Rothenberg, E. & Selvin, P.R. Single-molecule-based super-resolution images in the presence of multiple fluorophores. Nano Lett. 11, 5090–5096 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, L., Zhang, W., Elnatan, D. & Huang, B. Faster STORM using compressed sensing. Nat. Methods 9, 721–723 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Cox, S. et al. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Methods 9, 195–200 (2012).

    Article  CAS  Google Scholar 

  14. Ram, S., Ward, E.S. & Ober, R.J. Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. Proc. Natl. Acad. Sci. USA 103, 4457–4462 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Michael, E. Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing (Springer, 2010).

  17. Hinton, G.E. & Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015).

    Article  PubMed  Google Scholar 

  19. Sage, D. et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods 12, 717–724 (2015).

    Article  CAS  Google Scholar 

  20. Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A.A. Image-to-image translation with conditional adversarial networks. Preprint at http://arxiv.org/abs/1611.07004 (2016).

  21. Ronneberger, O., Fischer, P. & Brox, T. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. (eds., Navab, N., Hornegger, J., Wells, W.M. & Frangi, A.F.), 234–241 (Springer; 2015).

  22. Goodfellow, I. et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014).

    Google Scholar 

  23. Ciresan, D.C., Giusti, A., Gambardella, L.M. & Schmidhuber, J. Mitosis detection in breast cancer histology images with deep neural networks. Med. Image Comput. Comput. Assist. Interv. 2013, 8150 (2013).

    Google Scholar 

  24. Wang, Z.W.Z. & Bovik, A.C.A.C. Mean squared error: love it or leave it? A new look at Signal Fidelity Measures. IEEE Signal Process. Mag. 26, 98–117 (2009).

    Article  Google Scholar 

  25. Zhao, H., Gallo, O., Frosio, I. & Kautz, J. Loss functions for image restoration with neural networks. IEEE Trans. Comput. IMAGING 3, 47–57 (2017).

    Article  Google Scholar 

  26. Culley, S. et al. Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat. Methods 15, 263–266 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

    Google Scholar 

  28. Arbona, J.-M., Herbert, S., Fabre, E. & Zimmer, C. Inferring the physical properties of yeast chromatin through Bayesian analysis of whole nucleus simulations. Genome Biol. 18, 81 (2017).

    Article  PubMed  Google Scholar 

  29. Arnal, I. & Wade, R.H. How does taxol stabilize microtubules? Curr. Biol. 5, 900–908 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Wu, S. et al. Microtubule motors regulate ISOC activation necessary to increase endothelial cell permeability. J. Biol. Chem. 282, 34801–34808 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. De Brabander, M., De May, J., Joniau, M. & Geuens, G. Ultrastructural immunocytochemical distribution of tubulin in cultured cells treated with microtubule inhibitors. Cell Biol. Int. Rep. 1, 177–183 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Schnitzbauer, J., Strauss, M.T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Löschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125, 570–575 (2012).

    Article  PubMed  Google Scholar 

  34. Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Sellés, J. et al. Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy. Sci. Rep. 7, 14732 (2017).

    Article  PubMed  Google Scholar 

  36. Bellot, G. et al. TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ. 14, 785–794 (2007).

    Article  CAS  Google Scholar 

  37. Boettiger, A.N. et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529, 418–422 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Z., Nishimura, Y. & Kanchanawong, P. Extracting microtubule networks from superresolution single-molecule localization microscopy data. Mol. Biol. Cell 28, 333–345 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Beghin, A. et al. Localization-based super-resolution imaging meets high-content screening. Nat. Methods 14, 1184–1190 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Ouyang, W. & Zimmer, C. The imaging tsunami: computational opportunities and challenges. Curr. Opin. Syst. Biol. 4, 105–113 (2017).

    Article  Google Scholar 

  42. Chen, F., Tillberg, P.W. & Boyden, E.S. Optical imaging. Expansion microscopy. Science 347, 543–548 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Chang, J.-B. et al. Iterative expansion microscopy. Nat. Methods 14, 593–599 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. de Boer, P., Hoogenboom, J.P. & Giepmans, B.N.G. Correlated light and electron microscopy: ultrastructure lights up!. Nat. Methods 12, 503–513 (2015).

    Article  CAS  Google Scholar 

  45. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Kendall, A. & Gal, Y. What uncertainties do we need in Bayesian deep learning for computer vision? Adv. Neural Inf. Process. Syst. 30, 5580–5590 (2017).

    Google Scholar 

  50. Xu, L., Choy, C.S. & Li, Y.W. in 2016 IEEE International Workshop on Acoustic Signal Enhancement, IWAENC 2016 (IEEE, 2016) doi:10.1109/IWAENC.2016.7602891.

  51. Maas, A.L., Hannun, A.Y. & Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. Proc. 30th Int. Conf. Mach. Learn. 30, 3 (2013).

    Google Scholar 

  52. Mao, X. et al. Least squares generative adversarial networks. ICCV 2794–2802 (2017) doi:10.1109/ICCV.2017.304.

  53. Kingma, D.P. & Ba, J. Adam: a method for stochastic optimization. ICLR 1–15. http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503 (2015).

  54. Rampasek, L. & Goldenberg, A. TensorFlow: biology's gateway to deep learning? Cell Syst. 2, 12–14 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Reddy, B.S. & Chatterji, B.N. An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5, 1266–1271 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Simard, P.Y., Steinkraus, D. & Platt, J.C. Best practices for convolutional neural networks applied to visual document analysis. Seventh Int. Conf. Doc. Anal. Recognition, 2003. Proceedings 1, 958–963 (2003).

    Article  Google Scholar 

  57. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  58. van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Henriques, R. et al. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat. Methods 7, 339–340 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Lelek, M. et al. Superresolution imaging of HIV in infected cells with FlAsH-PALM. Proc. Natl. Acad. Sci. USA 109, 8564–8569 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μmanager. Curr. Protoc. Mol. Biol. 92, 14.20.1–14.20.17 (2010).

    Google Scholar 

  62. Ovesný, M., Křížek, P., Borkovec, J., Svindrych, Z. & Hagen, G.M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014).

    Article  PubMed  Google Scholar 

  63. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Sergé, A., Bertaux, N., Rigneault, H. & Marguet, D. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods 5, 687–694 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following colleagues for useful discussions and suggestions and/or critical reading of the manuscript: C. Leduc, S. Etienne-Manneville, S. Lévêque-Fort, N. Bourg, A. Echard, J.-B. Masson, T. Rose, P. Hersen, F. Mueller, M. Cohen, Z. Zhang, and P. Kanchanawong. We also thank the four anonymous reviewers for their constructive criticism, which led to significant improvements of ANNA-PALM. We further thank O. Faklaris, J. Sellés and M. Penrad (Institut Jacques Monod), and F. Montel (Ecole Normale Supérieure de Lyon) for providing Xenopus nuclear pore data, J. Bai (Institut Pasteur) for TOM22 antibodies, and C. Leterrier for fixation protocols. We thank E. Rensen and C. Weber for help with experiments and suggestions, B. Lelandais for help with PALM image processing, J.-B. Arbona for polymer simulations and J. Parmar for suggestions that led to the name ANNA-PALM. We thank the IT service of Institut Pasteur, including J.-B. Denis, N. Joly, and S. Fournier, for access to the HPC cluster and relevant assistance, and T. Huynh for help with GPU computing. This work was funded by Institut Pasteur, Agence Nationale de la Recherche grant (ANR 14 CE10 0018 02), Fondation pour la Recherche Médicale (Equipe FRM, DEQ 20150331762), and the Région Ile de France (DIM Malinf). We also acknowledge Investissement d'Avenir grant ANR-16-CONV-0005 for funding a GPU farm used in this work. A.A. and X.H. are recipients of Pasteur-Roux fellowships from Institut Pasteur. W.O. is a scholar in the Pasteur–Paris University (PPU) International PhD program.

Author information

Authors and Affiliations

Authors

Contributions

W.O. conceived the method, developed ANNA-PALM software and web application, and performed experiments and analyses. A.A., M.L., and X.H. performed experiments. C.Z. conceived the method, supervised the project, and wrote the manuscript.

Corresponding author

Correspondence to Christophe Zimmer.

Ethics declarations

Competing interests

W.O. and C.Z. are listed as inventors on European patent applications EP17306022 and EP18305225.7 filed by Institut Pasteur.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1–4, Supplementary Note 1 Neural network architecture—A-net (PDF 37749 kb)

Life Sciences Reporting Summary (PDF 164 kb)

ANNA-PALM reconstruction quality improves with increasing acquisition time

This video shows an animated version of Figure 3, where the number of frames in the sparse PALM image (b) increases from k=0 to k=30,000. The quality of the corresponding ANNA-PALM reconstruction (e) increases with frame number, as shown by the merged image (h), where the ANNA-PALM reconstruction is shown in red and the dense PALM image obtained from K=30,000 frames (c) is shown in green. Panels a, c, d, f, g, i are identical to the corresponding panels in Figure 3. (MOV 17029 kb)

High-throughput super-resolution imaging with ANNA-PALM

This video shows a zoom-in into a mosaic image covering a 1.8 mm × 1.8 mm field, assembled from 1,089 individual fields of view. Top left: widefield mosaic image assembled from 1,089 widefield images. Top right: sparse PALM mosaic image assembled from 1,089 individual sparse PALM images, each of which was obtained from k=1,000 diffraction limited frames. Bottom left: mosaic of ANNA-PALM images reconstructed from the widefield images alone. Bottom right: mosaic ofANNA-PALM images reconstructed from the widefield images and the sparse PALM images combined. (MP4 26187 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, W., Aristov, A., Lelek, M. et al. Deep learning massively accelerates super-resolution localization microscopy. Nat Biotechnol 36, 460–468 (2018). https://doi.org/10.1038/nbt.4106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.4106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing