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            Abstract
Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an Î±-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.
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                    Figure 1: Saccharification yield from switchgrass, rice, and poplar GAUT4-KD lines and bioconversion of switchgrass GAUT4-KD to ethanol.[image: ]


Figure 2: Growth and yield of switchgrass, rice, and poplar GAUT4-KD transgenic lines.[image: ]


Figure 3: HG:GalAT activity of Arabidopsis (AtGAUT4), poplar (PdGAUT4), and switchgrass (PvGAUT4) recombinant GAUT4 transiently expressed in N. benthamiana and HG:GalAT activity in switchgrass WT and KD lines.[image: ]


Figure 4: Model of GAUT4 function in cell wall extractability, porosity and cell size, and hypothesis for mechanism of GAUT4-KD in recalcitrance and plant growth.[image: ]


Figure 5: Pectin-mediated wall cross-linking is reduced in the PvGAUT4-KD cell walls.[image: ]
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Integrated supplementary information

Supplementary Figure 1 Phylogenetic tree of GAUT Protein Family and gene model, RNAi construct, and relative transcript abundance of GAUT4 in switchgrass, rice and poplar knockdown (KD) lines.
Phylogenetic tree of GAUT Protein Family members of Arabidopsis thaliana TAIR10 (green), Populus trichocarpa v3.0 (purple), Oryza sativa v7.0 (blue), and Panicum virgatum v1.1 (red) from Phytozome 11.0 (https://phytozome.jgi.doe.gov/) showing relationship between amino acid sequences. The tree was constructed by the Neighbor-Joining method using MEGA6 [Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30, 2725-2729 (2013)]. Potri.016G001700, Pavir.J36995 and LOC_Os08g23780 (marked by red arrows) are named GAUT4 for P. trichocarpa, P. virgatum and O. sativa, respectively. (B) Gene models for OsGAUT4 (LOC_Os08g23780) and PtGAUT4 (Potri.016G001700) from Phytozome 11.0 Oryza sativa v7.0 and Populus trichocarpa v3.0, respectively. Gray boxes indicate the 5â€™ and 3â€™ untranslated regions; green and orange boxes indicate exons in rice and poplar, respectively; and lines indicate introns. nt: nucleotides. The indicated RNAi targeted sequence was 443 bp and 200 bp for rice and poplar, respectively. The sequences used for quantitative RT-PCR are indicated by arrows. (C) Schematic representation of pANIC12A [Mann, D.G. et al. Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnol J 10, 226-236 (2012)] and pAGSM552 [Biswal, A.K. et al. Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnol Biofuels 8, 41 (2015)] RNAi expression vectors containing an inverted repeat (indicated by opposing black arrows) of PvGAUT4 and PtGAUT4 RNAi target sequence, respectively. Since the switchgrass and rice RNAi target sequences share 88% identity, the pANIC12A-PvGAUT4 construct was used to transform both switchgrass and rice. (D) Relative transcript levels of PvGAUT4 and its homologs as determined by quantitative RT-PCR of RNA extracted from the first (top) leaf of greenhouse-grown, 3-month-old R1 stage tillers of switchgrass WT and PvGAUT4-KD lines (2A, 2B, and 4A). The expression of PvGAUT4 in WT was set to 1 and switchgrass CYP5 was used as a reference gene. n = 8. (E) Relative transcript levels of OsGAUT4 and its homologs as determined by quantitative RT-PCR analysis of RNA from the first (top) leaf from greenhouse-grown 3-month-old WT and OsGAUT4-KD lines 2A, 2B, 7A, 7B. The expression of OsGAUT4 in rice WT was set to 1 and actin was used as a reference gene. n = 6. (F) Relative transcript levels of PdGAUT4 and its homologs as determined by quantitative RT-PCR analysis of stem xylem RNA from greenhouse-grown 3-month-old poplar WT, vector controls (V.Control-1-8) and PdGAUT4-KD lines (AB23.1 to AB23.15; transcript levels of the homologs were only determined for lines AB23.2, AB23.5, and AB23.12). Expression of PdGAUT4 in poplar WT was set to 1 and 18S rRNA was used as a reference gene. n = 6. (G) Relative transcript levels of PvGAUT4 as determined by quantitative RT-PCR analysis of RNA extracted from R1-stage tillers of field-grown switchgrass WT and PvGAUT4-KD lines harvested over three years of the field experiment, and normalized to switchgrass Ubiquitin (UBI) as the reference gene. n = 3. Data are presented as box plots showing the median as well as the 25th and 75th percentiles. Ends of whiskers are set at 1.5*IQR above and below the third and first quartiles, respectively. Statistical analysis was with one-way ANOVA followed by Fisherâ€™s least significant difference method; *P < 0.05, **P < 0.001.


Supplementary Figure 2 Saccharification yield from poplar control and PdGAUT4-KD lines, and lignin content and S/G ratio from switchgrass and poplar control and KD lines.
(A) Glucose release, (B) xylose release, and (C) total sugar release of poplar WT, vector control, and PdGAUT4-KD lines grown in the greenhouse. (D) Total lignin content and (E) lignin S/G ratio of switchgrass WT and PvGAUT4-KD lines (2A, 2B, and 4A) grown in the greenhouse. (F) Total lignin content and (G) lignin S/G ratio of poplar WT, vector control, and PdGAUT4-KD lines grown in the greenhouse. For poplar, n = 25 for WT; n = 10-15 (as indicated on the graphs) for vector control (V.Control-1-8) and PdGAUT4-KD lines (AB23.1-AB23.15). For switchgrass, n = 5. (H) Total lignin content and (I) lignin S/G ratio of switchgrass WT and PvGAUT4-KD lines grown in the field over the 3-year field experiment and harvested at the end of the season. n = 3. Data are presented as box plots showing the median as well as the 25th and 75th percentiles. Ends of whiskers are set at 1.5*IQR above and below the third and first quartiles, respectively. Significance P values are expressed as *P < 0.05, **P < 0.001. Statistical analysis was by one-way analysis of variance (ANOVA) followed by Tukeyâ€™s multiple comparison test in Statistica 5.0 for greenhouse data and by Fisherâ€™s least significant difference method for field data.


Supplementary Figure 3 Plant morphology and dry matter accumulation in greenhouse-grown switchgrass PvGAUT4-KD lines and disease severity in field-grown lines.
(A) Height, (B) number of tillers, and (C) dry aerial biomass of 60-day-old WT and PvGAUT4-KD lines grown in 1-gallon (4 L) pots in the greenhouse, n = 10. (D) Tiller growth phenotype, (E) height of tillers in panel D, (F) photo of tiller width, (G) width of tillers in panel F and (H) internode length of WT and PvGAUT4-KD 9-week-old plants grown in 5-gallon pots in the greenhouse, n = 25. Arrows in panel F indicate the location of the 4th internodes. (I) Number of tillers, (J) width of tiller 4th internode, and (K) plant height of WT and PvGAUT4-KD lines grown in 5-gallon pots in the greenhouse, n = 20. Statistical analysis of the greenhouse data was using one-way analysis of variance (ANOVA) followed by Tukeyâ€™s multiple comparison test in Statistica 5.0. (L) Photograph of field-grown WT and PvGAUT4-KD switchgrass at mid- and end-of-season during a 3-year field trial (2013-2015). (M) Rust (Puccinia emaculata) (small lesions) and Bipolaris (large lesions) disease symptoms in WT and PvGAUT4-KD lines grown in the field (photos were taken in year 3 - August 24, 2015). Visual assessment identified more Bipolaris-induced leaf lesions in WT compared to PvGAUT4-KD lines. (N, O) Quantification of Puccinia emaculata rust disease severity in year 2 (N) and year 3 (O) field experiments. There was no significant difference between PvGAUT4-KD lines and WT, except for lines 2A and 2B in the last measurement of year 2 (Julian date 232). For the field data, the experimental unit (n) was a distinct plot that consisted of four genetically-identical clones of a single transgenic event (n = 3). Means within each time point were compared using one-way ANOVA followed by Fisherâ€™s least significant difference method for field data. All data are presented as box plots showing the median as well as the 25th and 75th percentiles. Ends of whiskers are set at 1.5*IQR above and below the third and first quartiles, respectively. *P < 0.05, **P < 0.001.


Supplementary Figure 4 Growth and relative water content of poplar control and PdGAUT4-KD lines.
(A) Plant height and (B) diameter of three-month-old poplar WT, vector control (VC), and PdGAUT4-KD lines. n = 25 for WT; n = 10-15 (as indicated on the graphs) for vector control (V.Control-1-8) and PdGAUT4-KD lines (AB23.1-AB23.15). (C) Plant phenotype of 3-month-old control (WT and VC) lines and PdGAUT4-KD lines AB23.2, AB23.5, AB23.12 and AB23.14 (two plants from each line). (D) Height and (E) radial growth of PdGAUT-KD lines compared to controls over a 9-month growth period. (F) Plant height and (G) stem diameter of 3-month-old, greenhouse-grown PdGAUT4-KD transgenic plants (as % of WT) were plotted against corresponding PdGAUT4 transcript expression levels in xylem tissue, showing negative correlations. Poplar 18S rRNA was used as reference gene in the quantitative RT-PCR transcript expression analysis. (H) Leaf phenotype (6th leaf from the apex) of control (WT and VC) and PdGAUT4-KD lines from 3-month-old plants. (I) Length and (J) width of leaves from different developmental stages of 3-month-old plants. Every other leaf of ten plants was measured starting with the 2nd leaf from the apex. (K and L) Leaf area of (K) developing (10th from apex) and (L) fully expanded (20th from apex) leaves, respectively, of 3-month-old plants. (M) Leaf relative water content (RWC) of WT and PdGAUT4-KD lines. (N) Fresh weight and (O) dry weight of WT and PdGAUT4-KD stems from 3-month-old plants. For panels I-O, n = 10. Data are presented as box plots showing the median as well as the 25th and 75th percentiles. Ends of whiskers are set at 1.5*IQR above and below the third and first quartiles, respectively. *P < 0.05, **P < 0.001 (one-way analysis of variance (ANOVA) followed by Tukeyâ€™s multiple comparison test).


Supplementary Figure 5 HG:GalAT activity of Arabidopsis (AtGAUT4), poplar (PdGAUT4), and switchgrass (PvGAUT4) recombinant GAUT4 transiently expressed in N. benthamiana.
(A) Pmole [14C]GalA-radiolabeled HG synthesized by solubilized and partially purified membrane proteins (1 Î¼g protein) from N. benthamiana leaves transiently co-expressing GAUT4 constructs and the silencing suppresor p19 [Voinnet, O., Pinto, Y.M. & Baulcombe, D.C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96, 14147-14152 (1999)], and leaves expressing p19 alone, in 3-hr reactions containing UDP-[14C]GalA and exogenous HG acceptors. (B) Quantitative real time PCR analysis of GAUT4 transgene transcript levels using N. benthamiana 60S ribosomal protein L23 [Liu, D. et al. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 7, e46451 (2012)] as the reference gene. The dotted line indicates the respective transgene transcript expression level in the control samples (transfected only with p19), which is set to 1. (C) Western blot of microsome samples (200 Î¼g protein) using anti-His-tag antibody. Arrow heads, recombinant AtGAUT4 and PdGAUT4 protein bands; arrow, a non-specific protein band. (D) Sensitivity of products synthesized by recombinant Arabidopsis, poplar and switchgrass GAUT4 to digestion by endopolygalacturonase-I (+EPG). Data are duplicate samples from at least two independent experiments (n=4), presented as box plots showing the median as well as the 25th and 75th percentiles. Ends of whiskers are set at 1.5*IQR above and below the third and first quartiles, respectively. *P < 0.05, **P < 0.01, ***P < 0.001 (ANOVA followed by Tukeyâ€™s multiple comparison test).


Supplementary Figure 6 Glycome profiling of switchgrass biomass from WT and PvGAUT4-KD lines.
Switchgrass cell wall (AIR; prepared from WT and PvGAUT4-KD R1 stage tillers) was sequentially extracted using increasingly harsh solvents (indicated in grey boxes at the bottom of the panels) and the wall extracts were subsequently analyzed by ELISA using 155 plant cell wall non-cellulosic glycan-directed monoclonal antibodies (mAbs) as described in Online Methods. Data are presented as heatmaps with the range of strongest ELISA binding response to no binding indicated by a yellow-red-blue-black scale. The mAbs are grouped based on the cell wall glycans they primarily recognize as shown in the color-coded panel on the right side of the heatmaps. The mass amounts of materials recovered in each extraction step are depicted in the bar graphs above the heatmaps. Dotted green boxes outline major areas of the heatmaps where reduced or increased ELISA binding responses were clearly observed in the PvGAUT4-KD lines compared to WT.


Supplementary Figure 7 Glycome profiling of poplar biomass from WT and PdGAUT4-KD lines.
Sequential cell wall extracts were prepared from poplar stem AIR using increasingly harsh solvents (indicated in grey boxes at the bottom of the panels) and subsequently analyzed by ELISA using 155 plant cell wall non-cellulosic glycan-directed monoclonal antibodies (mAbs) as described in Online Methods. Data are presented as heatmaps with the range of strongest ELISA binding response to no binding indicated by a yellow-red-blue-black scale. The mAbs are grouped based on the cell wall glycans they primarily recognize as shown in the color-coded panel on the right side of the heatmaps. The mass amounts of materials recovered in each extraction step are depicted in the bar graphs above the heatmaps. Dotted green boxes outline major areas of the heatmaps where reduced or increased ELISA binding responses were clearly observed in the PdGAUT4-KD lines compared to WT.


Supplementary Figure 8 Transmission electron microscopy of immunogold-labeled switchgrass stem cross-sections.
Transmission electron microscopy was carried out on phloem cell walls in switchgrass stem (R1 stage) cross-sections from WT and PvGAUT4-KD lines. Immunolabeling was with HG-specific antibodies JIM5 (A-D) and JIM7 (E-H). CW â€“ cell wall; CML â€“ compound middle lamellae. Black double-ended arrows indicate cell wall thickness. Scale bars = 0.5 Î¼m. (I-J) Numbers of immunogold particles per Î¼m2 wall area observed as representative of JIM5 and JIM7 epitope abundance in WT and PvGAUT4-KD cell wall cross sections shown in panels A-H. n = 6. Data are presented as box plots showing the median as well as the 25th and 75th percentiles. Ends of whiskers are set at 1.5*IQR above and below the third and first quartiles, respectively. *P < 0.05, **P < 0.001 (one-way analysis of variance (ANOVA) followed by Tukeyâ€™s multiple comparison test).


Supplementary Figure 9 Mass of cell wall alcohol insoluble residue (AIR), each sequential AIR extract, and the insoluble pellet from (A) switchgrass R1 stage tillers and (B) poplar stem biomass from control (WT only for switchgrass; WT and vector control for poplar) and GAUT4-KD lines.
(i) Mass of AIR extracted per gram ground dry biomass. [(ii) â€“ (vii)] Amount of material recovered in each fraction following sequential extraction of AIR using increasingly harsh solvents: (ii) 50 mM ammonium oxalate, (iii) 50 mM sodium carbonate, (iv) 1M KOH, (v) 4M KOH, (vi) 100 mM sodium chlorite, and (vii) 4M KOH post-chlorite (PC). (viii) Total amount of material recovered in all AIR extracts combined. (ix) Amount of material remaining in the final insoluble pellet. Data in panels (ii) to (ix) are in mg extract/gram AIR. n = 6. Data are presented as box plots showing the median as well as the 25th and 75th percentiles. Ends of whiskers are set at 1.5*IQR above and below the third and first quartiles, respectively. *P < 0.05, **P < 0.001 (one-way analysis of variance (ANOVA) followed by Tukeyâ€™s multiple comparison test).


Supplementary Figure 10 Physical assessment of switchgrass WT and PvGAUT4-KD biomass.
(A) Stereomicrographs of dry and fully hydrated switchgrass stem sections, showing greater water uptake by the PvGAUT4-KD biomass compared to WT. Sample volumes were calculated from measurements taken directly from the images, with volumes of the hollow central stem core excluded from the volume calculations. Volume differences between the dry and fully hydrated samples are reported as percent changes. Measurements were taken from two stem sections each from two independent stems from two genetically identical clones of a single transgenic event (n = 4). Data are presented as box plots showing the median as well as the 25th and 75th percentiles. Ends of whiskers are set at 1.5*IQR above and below the third and first quartiles, respectively. Scale bar = 1 mm. (B and C) Scanning electron micrographs of hot-water pre-treated switchgrass biomass (20 mesh i.e. 0.85 mm; biomass pre-treated at 180Â°C, for 15 minutes), showing more extensive tissue/cell damage in PvGAUT4-KD biomass compared to WT. Arrows indicate sites of tissue tearing. Scale bars = 50 Î¼m.


Supplementary Figure 11 Characteristics of cellulose extracted from switchgrass WT and PvGAUT4-KD lines.
(A) Number-average (DPn) and weight-average (DPw) degree of polymerization of cellulose. (B) Polydispersity index of cellulose. (C) Cellulose crystallinity index. (D) Distribution coefficient of Direct Orange (DO) dye. All measurements were taken in triplicate from two independently grown biomass samples of three genetically identical clones of a single trangenic event (n = 6). Data are presented as box plots showing the median as well as the 25th and 75th percentiles. Ends of whiskers are set at 1.5*IQR above and below the third and first quartiles, respectively. *P < 0.05 (one-tailed Studentâ€™s t-test).


Supplementary Figure 12 Microscopic analysis of poplar wood phloem and xylem tissue.
(A-L) Toluidine blue-stained cross sections of the stem 10th internode (from top) from three-month-old (A-D) WT and PdGAUT4-KD transgenic lines (E-H) AB23.2 and (I-L) AB23.12. (B-D, F-H, J-L) Higher magnification of (B, F, J) phloem tissue, (C, G, K) xylem vessels, and (D, H, L) secondary wood xylem tissue from panels A, E, and I, respectively. Red arrows indicate ray cells. ep: epidermis, co: cortex, sc: sclerenchyma fibers, ph: phloem, c: cambium, xy: xylem, r: xylem ray cells, xp: xylem parenchyma, v: xylem vessel, p: pith. Bar = 50 Î¼m in panels A-D, E-G, I-K; 100 Î¼m in panels H and L. (M-N) Distance across phloem and secondary wood xylem, respectively, in the stem cross sections. (O) Numbers of individual xylem vessel cells per 300 Î¼m2 area of secondary wood xylem. (P) Xylem vessel cell lumen diameter. Data are presented as box plots showing the median as well as the 25th and 75th percentiles. Ends of whiskers are set at 1.5*IQR above and below the third and first quartiles, respectively. n = 6 for panel M, n = 5 for panels N-P. *P < 0.05, **P < 0.001 (ANOVA followed by Tukeyâ€™s multiple comparison test).


Supplementary Figure 13 Size of individual xylem vessel and fiber cells from PdGAUT4-KD and WT debarked and depithed stem wood tissue.
Xylem vessel and fiber cells were separated by maceration of the bottom part of stem (6 cm) from 9-month-old plants. (A) Vessel cell total length, (B) vessel cell lumen length, (C) vessel cell total diameter, (D) fiber cell length, and (E) fiber cell diameter. A total of approximately 100 vessel and 130 fiber cells from three plants of each genotype were measured using an AxioVision camera in a Zeiss Axioplan microscope (Carl Zeiss). Data from two independent experiments (n = 6) are presented as box plots showing the median as well as the 25th and 75th percentiles. Ends of whiskers are set at 1.5*IQR above and below the third and first quartiles, respectively. *P < 0.05, **P < 0.001 (ANOVA followed by Tukeyâ€™s multiple comparison test).


Supplementary Figure 14 Field design of the 3-year field-trial of switchgrass WT and PvGAUT4-KD lines.
The field (14.5 m x 23.6 m) was divided into three subplots, which were each further divided into replicate-plots arranged in a completely randomized design within the subplot. The subplot on the upper third of the diagram contains the replicate-plots (green boxes) for the PvGAUT4-KD lines (2A, 2B, and 4A) and the corresponding WT (â€˜Alamoâ€™-derived parent clone SA7), as well as an additional parental clone (SA37). The replicate-plots were spaced 152 cm apart, and each was planted at 76 cm apart with four vegetatively propagated clones of each line (inset at the upper right hand corner). A border of â€˜Alamoâ€™-derived ST1-genotype plants was included to control for shading effects.





Supplementary information
Supplementary Text and Figures
Supplementary Figures 1â€“14 (PDF 3089 kb)


Life Sciences Reporting Summary (PDF 158 kb)

Supplementary Tables and Supplementary Notes
Supplementary Table 1 and Supplementary Notes 1â€“6 (PDF 1044 kb)


Supplementary Table 2
Glycosyl residue composition of cell wall extracts from tillers of switchgrass WT and PvGAUT4-KD plants (XLSX 13 kb)


Supplementary Table 3
Glycosyl residue composition and total carbohydrate in cell wall extracts from WT and PvGAUT4-KD lines (XLSX 12 kb)


Supplementary Table 4
Glycosyl residue composition of cell wall extracts from stems of P. deltoides WT, vector control and PdGAUT4-KD plants (XLSX 14 kb)


Supplementary Table 5
Glycosyl residue composition and total carbohydrate of cell wall extracts from WT and PdGAUT4-KD lines (AB23.2,AB23.5, AB23.12, AB23.14) (XLSX 12 kb)


Supplementary Table 6
Glycosyl linkage analysis of fractionated cell walls from switchgrass WT and PvGAUT4-KD lines (XLSX 12 kb)


Supplementary Table 7
Glycosyl linkage analysis of fractionated cell walls from P.deltoides WT and PdGAUT4-KD lines. (XLSX 11 kb)





Rights and permissions
Reprints and permissions


About this article
[image: Check for updates. Verify currency and authenticity via CrossMark]       



Cite this article
Biswal, A., Atmodjo, M., Li, M. et al. Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis.
                    Nat Biotechnol 36, 249â€“257 (2018). https://doi.org/10.1038/nbt.4067
Download citation
	Received: 14 June 2017

	Accepted: 02 January 2018

	Published: 12 February 2018

	Issue Date: March 2018

	DOI: https://doi.org/10.1038/nbt.4067


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        








            


            

            
        





    
        

        
            
                

    
        
            
                
                Access through your institution
            
        

        
            
                
                    Buy or subscribe
                
            

        
    



            

            
                

    
        
        

        
        
            
                
                Access through your institution
            
        

        
            
                Change institution
            
        

        
        
            
                Buy or subscribe
            
        

        
    



            

        
    


    
        
    

    
    

    
        
            
                
                    
                        
                            Advertisement

                            
    
        
            
                [image: Advertisement]
        

    


                        

                    

                

            

            

            

        

    






    
        
            
                Explore content

                	
                                
                                    Research articles
                                
                            
	
                                
                                    Reviews & Analysis
                                
                            
	
                                
                                    News & Comment
                                
                            
	
                                
                                    Podcasts
                                
                            
	
                                
                                    Videos
                                
                            
	
                                
                                    Current issue
                                
                            
	
                                
                                    Collections
                                
                            


                	
                            Follow us on Facebook
                            
                        
	
                            Follow us on Twitter
                            
                        
	
                            
                                Subscribe
                            
                        
	
                            Sign up for alerts
                            
                        
	
                            
                                RSS feed
                            
                        


            

        
    
    
        
            
                
                    About the journal

                    	
                                
                                    Aims & Scope
                                
                            
	
                                
                                    Journal Information
                                
                            
	
                                
                                    Journal Metrics
                                
                            
	
                                
                                    About the Editors
                                
                            
	
                                
                                    Our publishing models
                                
                            
	
                                
                                    Editorial Values Statement
                                
                            
	
                                
                                    Editorial Policies
                                
                            
	
                                
                                    Content Types
                                
                            
	
                                
                                    Web Feeds
                                
                            
	
                                
                                    Posters
                                
                            
	
                                
                                    Contact
                                
                            
	
                                
                                    Research Cross-Journal Editorial Team
                                
                            
	
                                
                                    Reviews Cross-Journal Editorial Team
                                
                            


                

            
        

        
            
                
                    Publish with us

                    	
                                
                                    Submission Guidelines
                                
                            
	
                                
                                    For Reviewers
                                
                            
	
                                
                                    Language editing services
                                
                            
	
                                Submit manuscript
                                
                            


                

            
        
    



    
        Search

        
            Search articles by subject, keyword or author
            
                
                    
                

                
                    
                        Show results from
                        All journals
This journal


                    

                    
                        Search
                    

                


            

        


        
            
                Advanced search
            
        


        Quick links

        	Explore articles by subject
	Find a job
	Guide to authors
	Editorial policies


    





        
    
        
            

            
                
                    Nature Biotechnology (Nat Biotechnol)
                
                
    
    
        ISSN 1546-1696 (online)
    
    


                
    
    
        ISSN 1087-0156 (print)
    
    

            

        

    




    
        
    nature.com sitemap

    
        
            
                About Nature Portfolio

                	About us
	Press releases
	Press office
	Contact us


            


            
                Discover content

                	Journals A-Z
	Articles by subject
	Protocol Exchange
	Nature Index


            


            
                Publishing policies

                	Nature portfolio policies
	Open access


            


            
                Author & Researcher services

                	Reprints & permissions
	Research data
	Language editing
	Scientific editing
	Nature Masterclasses
	Research Solutions


            


            
                Libraries & institutions

                	Librarian service & tools
	Librarian portal
	Open research
	Recommend to library


            


            
                Advertising & partnerships

                	Advertising
	Partnerships & Services
	Media kits
                    
	Branded
                        content


            


            
                Professional development

                	Nature Careers
	Nature 
                        Conferences


            


            
                Regional websites

                	Nature Africa
	Nature China
	Nature India
	Nature Italy
	Nature Japan
	Nature Korea
	Nature Middle East


            


        

    

    
        	Privacy
                Policy
	Use
                of cookies
	
                Your privacy choices/Manage cookies
                
            
	Legal
                notice
	Accessibility
                statement
	Terms & Conditions
	Your US state privacy rights


    





        
    
        [image: Springer Nature]
    
    © 2024 Springer Nature Limited




    

    
    
    







    

    



    
    

        

    
        
            


Close
    



        

            
                
                    [image: Nature Briefing]
                    Sign up for the Nature Briefing newsletter â€” what matters in science, free to your inbox daily.

                

                
                    
                        
                        

                        
                        
                        
                        

                        Email address

                        
                            
                            
                            
                            Sign up
                        


                        
                            
                            I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.
                        

                    

                

            


        


    

    
    

        

    
        
            

Close
    



        
            Get the most important science stories of the day, free in your inbox.
            Sign up for Nature Briefing
            
        


    









    [image: ]







[image: ]
