Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial synthesis of medium-chain chemicals from renewables

Abstract

Linear, medium-chain (C8–C12) hydrocarbons are important components of fuels as well as commodity and specialty chemicals. As industrial microbes do not contain pathways to produce medium-chain chemicals, approaches such as overexpression of endogenous enzymes or deletion of competing pathways are not available to the metabolic engineer; instead, fatty acid synthesis and reversed β-oxidation are manipulated to synthesize medium-chain chemical precursors. Even so, chain lengths remain difficult to control, which means that purification must be used to obtain the desired products, titers of which are typically low and rarely exceed milligrams per liter. By engineering the substrate specificity and activity of the pathway enzymes that generate the fatty acyl intermediates and chain-tailoring enzymes, researchers can boost the type and yield of medium-chain chemicals. Development of technologies to both manipulate chain-tailoring enzymes and to assay for products promises to enable the generation of g/L yields of medium-chain chemicals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plant biomass comprises varying proportions of lignin, glucose and cellulose.
Figure 2: Precursor pathways for MC chemicals.
Figure 3: Metabolic pathways for MC (MC) chemicals.

Similar content being viewed by others

References

  1. Saerens, S.M.G. et al. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol. 74, 454–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Knothe, G. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22, 1358–1364 (2008).

    Article  CAS  Google Scholar 

  3. Rajesh Kumar, B. & Saravanan, S. Use of higher alcohol biofuels in diesel engines: A review. Renew. Sustain. Energy Rev. 60, 84–115 (2016).

    Article  CAS  Google Scholar 

  4. Choi, Y.J. & Lee, S.Y. Microbial production of short-chain alkanes. Nature 502, 571–574 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Chang, Y.W., Lee, D. & Bae, S.Y. Preparation of polyethylene-octene elastomer/clay nanocomposite and microcellular foam processed in supercritical carbon dioxide. Polym. Int. 55, 184–189 (2006).

    Article  CAS  Google Scholar 

  6. Cabrales, L., Calderon, K., Hinojosa, I., Valencia, F. & Abidi, N. Synthesis and characterization of polyesters derived from sebacic acid, hexanediol, and hydroquinone. Int. J. Polym. Anal. Charact. 21, 718–727 (2016).

    Article  CAS  Google Scholar 

  7. Honda Malca, S. et al. Bacterial CYP153A monooxygenases for the synthesis of omega-hydroxylated fatty acids. Chem. Commun. (Camb.) 48, 5115–5117 (2012).

    Article  CAS  Google Scholar 

  8. Chen, J.S. et al. Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage. PeerJ 3, e1468 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, X., Sheng, J. & Curtiss, R. III. Fatty acid production in genetically modified cyanobacteria. Proc. Natl. Acad. Sci. USA 108, 6899–6904 (2011).

    Article  PubMed  Google Scholar 

  10. Rock, C.O. & Jackowski, S. Regulation of phospholipid synthesis in Escherichia coli. Composition of the acyl-acyl carrier protein pool in vivo. J. Biol. Chem. 257, 10759–10765 (1982).

    CAS  PubMed  Google Scholar 

  11. Torella, J.P. et al. Tailored fatty acid synthesis via dynamic control of fatty acid elongation. Proc. Natl. Acad. Sci. USA 110, 11290–11295 (2013).

    Article  PubMed  Google Scholar 

  12. Leber, C. & Da Silva, N.A. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnol. Bioeng. 111, 347–358 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Lian, J. & Zhao, H. Reversal of the β-oxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. ACS Synth. Biol. 4, 332–341 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Spakowicz, D.J. & Strobel, S.A. Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl. Microbiol. Biotechnol. 99, 4943–4951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rui, Z., Harris, N.C., Zhu, X.J., Huang, W. & Zhang, W.J. Discovery of a family of desaturase-like enzymes for 1-alkene biosynthesis. ACS Catal. 5, 7091–7094 (2015).

    Article  CAS  Google Scholar 

  16. De Vrieze, M. et al. Volatile organic compounds from native potato-associated pseudomonas as potential anti-oomycete agents. Front. Microbiol. 6, 1295 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Antonious, G.F., Dahlman, D.L. & Hawkins, L.M. Insecticidal and acaricidal performance of methyl ketones in wild tomato leaves. Bull. Environ. Contam. Toxicol. 71, 400–407 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, Z. et al. Expanding the product portfolio of fungal type I fatty acid synthases. Nat. Chem. Biol. 13, 360–362 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X., Hicks, W.M., Silver, P.A. & Way, J.C. Engineering acyl carrier protein to enhance production of shortened fatty acids. Biotechnol. Biofuels 9, 24 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gajewski, J., Pavlovic, R., Fischer, M., Boles, E. & Grininger, M. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat. Commun. 8, 14650 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu, P., Qiao, K., Ahn, W.S. & Stephanopoulos, G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc. Natl. Acad. Sci. USA 113, 10848–10853 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Dellomonaco, C., Clomburg, J.M., Miller, E.N. & Gonzalez, R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Goh, E.B., Baidoo, E.E.K., Keasling, J.D. & Beller, H.R. Engineering of bacterial methyl ketone synthesis for biofuels. Appl. Environ. Microbiol. 78, 70–80 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, Y.J. et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7, 11709 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim, S., Clomburg, J.M. & Gonzalez, R. Synthesis of medium-chain length (C6-C10) fuels and chemicals via β-oxidation reversal in Escherichia coli. J. Ind. Microbiol. Biotechnol. 42, 465–475 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, J. et al. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microb. Cell Fact. 16, 17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mendez-Perez, D. et al. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli. Biotechnol. Bioeng. 114, 1703–1712 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, E.M., Eom, J.H., Um, Y., Kim, Y. & Woo, H.M. Microbial synthesis of myrcene by metabolically engineered Escherichia coli. J. Agric. Food Chem. 63, 4606–4612 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Wendisch, V.F. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr. Opin. Biotechnol. 30, 51–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Mak, W.S. et al. Integrative genomic mining for enzyme function to enable engineering of a non-natural biosynthetic pathway. Nat. Commun. 6, 10005 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grisewood, M.J. et al. Computational redesign of acyl-ACP thioesterase with improved selectivity toward medium-chain-length fatty acids. ACS Catal. 7, 3837–3849 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lennen, R.M., Braden, D.J., West, R.A., Dumesic, J.A. & Pfleger, B.F. A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol. Bioeng. 106, 193–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Clomburg, J.M. et al. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Metab. Eng. 28, 202–212 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, J., Zhang, X., Xia, X. & Dong, M. A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli. Metab. Eng. 41, 115–124 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Rutter, C.D. & Rao, C.V. Production of 1-decanol by metabolically engineered Yarrowia lipolytica. Metab. Eng. 38, 139–147 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Royce, L.A., Liu, P., Stebbins, M.J., Hanson, B.C. & Jarboe, L.R. The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl. Microbiol. Biotechnol. 97, 8317–8327 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Borrull, A., López-Martínez, G., Poblet, M., Cordero-Otero, R. & Rozès, N. New insights into the toxicity mechanism of octanoic and decanoic acids on Saccharomyces cerevisiae. Yeast 32, 451–460 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Eser, B.E., Das, D., Han, J., Jones, P.R. & Marsh, E.N. Oxygen-independent alkane formation by non-heme iron-dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 50, 10743–10750 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khara, B. et al. Production of propane and other short-chain alkanes by structure-based engineering of ligand specificity in aldehyde-deformylating oxygenase. ChemBioChem 14, 1204–1208 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bao, L., Li, J.J., Jia, C., Li, M. & Lu, X. Structure-oriented substrate specificity engineering of aldehyde-deformylating oxygenase towards aldehydes carbon chain length. Biotechnol. Biofuels 9, 185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu, Z. et al. Enabling the synthesis fo medium chain alkanes and 1-alkenes in yeast. Metab. Eng. doi:10.1016/j.ymben.2017.09.007 (2017).

  42. Dennig, A. et al. Oxidative decarboxylation of short-chain fatty acids to 1-alkenes. Angew. Chem. Int. Ed. 54, 8819–8822 (2015).

    Article  CAS  Google Scholar 

  43. Chen, B., Lee, D.Y. & Chang, M.W. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metab. Eng. 31, 53–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Belcher, J. et al. Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium. J. Biol. Chem. 289, 6535–6550 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rottig, A., Wolf, S. & Steinbüchel, A. In vitro characterization of five bacterial WS/DGAT acyltransferases regarding the synthesis of biotechnologically relevant short-chain-length esters. Eur. J. Lipid Sci. Technol. 118, 124–132 (2016).

    Article  CAS  Google Scholar 

  46. Thompson, R.A. & Trinh, C.T. Enhancing fatty acid ethyl ester production in Saccharomyces cerevisiae through metabolic engineering and medium optimization. Biotechnol. Bioeng. 111, 2200–2208 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Tao, H., Guo, D., Zhang, Y., Deng, Z. & Liu, T. Metabolic engineering of microbes for branched-chain biodiesel production with low-temperature property. Biotechnol. Biofuels 8, 92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Teo, W.S., Ling, H., Yu, A.Q. & Chang, M.W. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel. Biotechnol. Biofuels 8, 177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barney, B.M., Ohlert, J.M., Timler, J.G. & Lijewski, A.M. Altering small and medium alcohol selectivity in the wax ester synthase. Appl. Microbiol. Biotechnol. 99, 9675–9684 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Sherkhanov, S., Korman, T.P., Clarke, S.G. & Bowie, J.U. Production of FAME biodiesel in E. coli by direct methylation with an insect enzyme. Sci. Rep. 6, 24239 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Niwa, R. et al. Juvenile hormone acid O-methyltransferase in Drosophila melanogaster. Insect Biochem. Mol. Biol. 38, 714–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Nawabi, P., Bauer, S., Kyrpides, N. & Lykidis, A. Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Appl. Environ. Microbiol. 77, 8052–8061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Petronikolou, N. & Nair, S.K. Biochemical studies of mycobacterial fatty acid methyltransferase: a catalyst for the enzymatic production of biodiesel. Chem. Biol. 22, 1480–1490 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Huang, F.C., Peter, A. & Schwab, W. Expression and characterization of CYP52 genes involved in the biosynthesis of sophorolipid and alkane metabolism from Starmerella bombicola. Appl. Environ. Microbiol. 80, 766–776 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Durairaj, P. et al. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 14, 45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheong, S., Clomburg, J.M. & Gonzalez, R. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat. Biotechnol. 34, 556–561 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Gatter, M. et al. A newly identified fatty alcohol oxidase gene is mainly responsible for the oxidation of long-chain ω-hydroxy fatty acids in Yarrowia lipolytica. FEMS Yeast Res. 14, 858–872 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Bowen, C.H., Bonin, J., Kogler, A., Barba-Ostria, C. & Zhang, F. Engineering Escherichia coli for conversion of glucose to medium-chain ω-hydroxy fatty acids and α,ω-dicarboxylic acids. ACS Synth. Biol. 5, 200–206 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Seo, J.H., Lee, S.M., Lee, J. & Park, J.B. Adding value to plant oils and fatty acids: Biological transformation of fatty acids into ω-hydroxycarboxylic, α,ω-dicarboxylic, and ω-aminocarboxylic acids. J. Biotechnol. 216, 158–166 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Haushalter, R.W. et al. Production of odd-carbon dicarboxylic acids in Escherichia coli using an engineered biotin-fatty acid biosynthetic pathway. J. Am. Chem. Soc. 139, 4615–4618 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Fillet, S. & Adrio, J.L. Microbial production of fatty alcohols. World J. Microbiol. Biotechnol. 32, 152 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Youngquist, J.T. et al. Production of medium chain length fatty alcohols from glucose in Escherichia coli. Metab. Eng. 20, 177–186 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Sheng, J., Stevens, J. & Feng, X. Pathway compartmentalization in peroxisome of Saccharomyces cerevisiae to produce versatile medium chain fatty alcohols. Sci. Rep. 6, 26884 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cao, Y.X. et al. Biosynthesis of odd-chain fatty alcohols in Escherichia coli. Metab. Eng. 29, 113–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Lin, F.M., Marsh, E.N.G. & Lin, X.X.N. Recent progress in hydrocarbon biofuel synthesis: Pathways and enzymes. Chin. Chem. Lett. 26, 431–434 (2015).

    Article  CAS  Google Scholar 

  66. Bertram, J.H. et al. Five fatty aldehyde dehydrogenase enzymes from Marinobacter and Acinetobacter spp. and structural insights into the aldehyde binding pocket. Appl. Environ. Microbiol. 83, e00018–17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liu, Y. et al. High production of fatty alcohols in Escherichia coli with fatty acid starvation. Microb. Cell Fact. 15, 129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Foo, J.L. & Leong, S.S. Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules. Biotechnol. Biofuels 6, 81 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fujita, K., Matsuyama, A., Kobayashi, Y. & Iwahashi, H. Comprehensive gene expression analysis of the response to straight-chain alcohols in Saccharomyces cerevisiae using cDNA microarray. J. Appl. Microbiol. 97, 57–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Nie, L., Ren, Y. & Schulz, H. Identification and characterization of Escherichia coli thioesterase III that functions in fatty acid beta-oxidation. Biochemistry 47, 7744–7751 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, F., Carothers, J.M. & Keasling, J.D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354–359 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Mukherjee, K., Bhattacharyya, S. & Peralta-Yahya, P. GPCR-based chemical biosensors for medium-chain fatty acids. ACS Synth. Biol. 4, 1261–1269 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Jaspers, M.C., Meier, C., Zehnder, A.J., Harms, H. & van der Meer, J.R. Measuring mass transfer processes of octane with the help of an alkSalkB:gfp-tagged Escherichia coli. Environ. Microbiol. 3, 512–524 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Gajewski, J. et al. Engineering fatty acid synthases for directed polyketide production. Nat. Chem. Biol. 13, 363–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Kovačić, F. et al. Structural and functional characterisation of TesA - a novel Lysophospholipase A from Pseudomonas aeruginosa. PLoS One 8, e69125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Notonier, S., Gricman, Ł., Pleiss, J. & Hauer, B. Semirational protein engineering of CYP153AM.aq. -CPRBM3 for efficient terminal hydroxylation of short- to long-chain fatty acids. ChemBioChem 17, 1550–1557 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Hoffmann, S.M. et al. Structure-guided redesign of CYP153AM.aq for the improved terminal hydroxylation of fatty acids ChemCatChem 8, 1–7 (2016).

    Article  Google Scholar 

  78. Bokinsky, G. et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc. Natl. Acad. Sci. USA 108, 19949–19954 (2011).

    Article  PubMed  Google Scholar 

  79. Abdelaziz, O.Y. et al. Biological valorization of low molecular weight lignin. Biotechnol. Adv. 34, 1318–1346 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Georgia Institute of Technology Start-Up funds, a DuPont Young Faculty Award and a DARPA Young Faculty award to P.P.-Y., a Georgia Institute of Technology Molecular Biophysics and Biotechnology Graduate Assistance in Areas of National Need fellowship provided by the US Department of Education to S.S.(Grant # P200A120190), a Georgia Institute of Technology Renewables Bioproducts Institute Graduate Fellowship to N.S.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Peralta-Yahya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Notes 1 and 2 (PDF 732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarria, S., Kruyer, N. & Peralta-Yahya, P. Microbial synthesis of medium-chain chemicals from renewables. Nat Biotechnol 35, 1158–1166 (2017). https://doi.org/10.1038/nbt.4022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.4022

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research