Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular afterglow imaging with bright, biodegradable polymer nanoparticles

Abstract

Afterglow optical agents, which emit light long after cessation of excitation, hold promise for ultrasensitive in vivo imaging because they eliminate tissue autofluorescence. However, afterglow imaging has been limited by its reliance on inorganic nanoparticles with relatively low brightness and short-near-infrared (NIR) emission. Here we present semiconducting polymer nanoparticles (SPNs) <40 nm in diameter that store photon energy via chemical defects and emit long-NIR afterglow luminescence at 780 nm with a half-life of 6 min. In vivo, the afterglow intensity of SPNs is more than 100-fold brighter than that of inorganic afterglow agents, and the signal is detectable through the body of a live mouse. High-contrast lymph node and tumor imaging in living mice is demonstrated with a signal-to-background ratio up to 127-times higher than that obtained by NIR fluorescence imaging. Moreover, we developed an afterglow probe, activated only in the presence of biothiols, for early detection of drug-induced hepatotoxicity in living mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of SPNs.
Figure 2: Mechanistic study of the afterglow of SPNs.
Figure 3: 1O2-sensitizer-amplified NIR afterglow.
Figure 4: Tissue-penetration study of NIR afterglow luminescence.
Figure 5: In vivo afterglow imaging of lymph nodes and tumor.
Figure 6: Afterglow luminescence imaging of drug-induced hepatotoxicity.

Similar content being viewed by others

References

  1. Ntziachristos, V., Ripoll, J., Wang, L.V. & Weissleder, R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat. Biotechnol. 23, 313–320 (2005).

    Article  CAS  Google Scholar 

  2. Smith, A.M., Mancini, M.C. & Nie, S. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  CAS  Google Scholar 

  3. Chu, J. et al. A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo. Nat. Biotechnol. 34, 760–767 (2016).

    Article  CAS  Google Scholar 

  4. Thorek, D.L., Ogirala, A., Beattie, B.J. & Grimm, J. Quantitative imaging of disease signatures through radioactive decay signal conversion. Nat. Med. 19, 1345–1350 (2013).

    Article  CAS  Google Scholar 

  5. So, M.K., Xu, C., Loening, A.M., Gambhir, S.S. & Rao, J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 24, 339–343 (2006).

    Article  CAS  Google Scholar 

  6. Liu, H. et al. Intraoperative imaging of tumors using Cerenkov luminescence endoscopy: a feasibility experimental study. J. Nucl. Med. 53, 1579–1584 (2012).

    Article  Google Scholar 

  7. le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007).

    Article  CAS  Google Scholar 

  8. Maldiney, T. et al. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 133, 11810–11815 (2011).

    Article  CAS  Google Scholar 

  9. Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).

    Article  CAS  Google Scholar 

  10. Li, Z. et al. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 137, 5304–5307 (2015).

    Article  CAS  Google Scholar 

  11. Lécuyer, T. et al. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 6, 2488–2524 (2016).

    Article  Google Scholar 

  12. Maldiney, T. et al. In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles. Opt. Mater. Express 2, 261–268 (2012).

    Article  CAS  Google Scholar 

  13. Abdukayum, A., Chen, J.T., Zhao, Q. & Yan, X.P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135, 14125–14133 (2013).

    Article  CAS  Google Scholar 

  14. Liu, F. et al. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8 . Sci. Rep. 3, 1554 (2013).

    Article  Google Scholar 

  15. Maldiney, T. et al. In vivo imaging with persistent luminescence silicate-based nanoparticles. Opt. Mater. 35, 1852–1858 (2013).

    Article  CAS  Google Scholar 

  16. Sharma, S.K. et al. Persistent luminescence of AB2O4:Cr3+ (A = Zn, Mg, B = Ga, Al) spinels: new biomarkers for in vivo imaging. Opt. Mater. 36, 1901–1906 (2014).

    Article  CAS  Google Scholar 

  17. Shi, J. et al. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging. Biomaterials 37, 260–270 (2015).

    Article  CAS  Google Scholar 

  18. Toppari, J. et al. Male reproductive health and environmental xenoestrogens. Environ. Health Perspect. 104 (Suppl. 4), 741–803 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Maldiney, T. et al. In vitro targeting of avidin-expressing glioma cells with biotinylated persistent luminescence nanoparticles. Bioconjug. Chem. 23, 472–478 (2012).

    Article  CAS  Google Scholar 

  20. Maldiney, T. et al. Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability. Int. J. Pharm. 423, 102–107 (2012).

    Article  CAS  Google Scholar 

  21. Kobayashi, H. & Choyke, P.L. Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc. Chem. Res. 44, 83–90 (2011).

    Article  CAS  Google Scholar 

  22. Lovell, J.F., Liu, T.W., Chen, J. & Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 110, 2839–2857 (2010).

    Article  CAS  Google Scholar 

  23. Chen, L.J. et al. Activatable multifunctional persistent luminescence nanoparticle/copper sulfide nanoprobe for in vivo luminescence imaging-guided photothermal therapy. ACS Appl. Mater. Interfaces 8, 32667–32674 (2016).

    Article  CAS  Google Scholar 

  24. Feng, L. et al. Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem. Soc. Rev. 42, 6620–6633 (2013).

    Article  CAS  Google Scholar 

  25. Wu, C. & Chiu, D.T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. 52, 3086–3109 (2013).

    Article  CAS  Google Scholar 

  26. Qian, C. et al. Light-activated hypoxia-responsive nanocarriers for enhanced anticancer therapy. Adv. Mater. 28, 3313–3320 (2016).

    Article  CAS  Google Scholar 

  27. Zhen, X. et al. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano 10, 6400–6409 (2016).

    Article  CAS  Google Scholar 

  28. Pu, K. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9, 233–239 (2014).

    Article  CAS  Google Scholar 

  29. Hong, G. et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat. Commun. 5, 4206 (2014).

    Article  CAS  Google Scholar 

  30. Lyu, Y., Xie, C., Chechetka, S.A., Miyako, E. & Pu, K. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 138, 9049–9052 (2016).

    Article  CAS  Google Scholar 

  31. Ghezzi, D. et al. A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2, 166 (2011).

    Article  Google Scholar 

  32. Palner, M., Pu, K., Shao, S. & Rao, J. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. Int. Ed. 54, 11477–11480 (2015).

    Article  CAS  Google Scholar 

  33. Scurlock, R.D., Wang, B.J., Ogilby, P.R., Sheats, J.R. & Clough, R.L. Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer. J. Am. Chem. Soc. 117, 10194–10202 (1995).

    Article  CAS  Google Scholar 

  34. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97 (2004).

    Article  CAS  Google Scholar 

  35. Nasr, A., Lauterio, T.J. & Davis, M.W. Unapproved drugs in the United States and the Food and Drug Administration. Adv. Ther. 28, 842–856 (2011).

    Article  Google Scholar 

  36. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–716 (2004).

    Article  CAS  Google Scholar 

  37. Willmann, J.K., van Bruggen, N., Dinkelborg, L.M. & Gambhir, S.S. Molecular imaging in drug development. Nat. Rev. Drug Discov. 7, 591–607 (2008).

    Article  CAS  Google Scholar 

  38. Pessayre, D., Mansouri, A., Berson, A. & Fromenty, B. Mitochondrial involvement in drug-induced liver injury. Handb. Exp. Pharmacol. 311–365 (2010).

  39. Dodeigne, C., Thunus, L. & Lejeune, R. Chemiluminescence as diagnostic tool. A review. Talanta 51, 415–439 (2000).

    Article  CAS  Google Scholar 

  40. Maldiney, T. et al. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 5, 854–862 (2011).

    Article  CAS  Google Scholar 

  41. Shuhendler, A.J., Pu, K., Cui, L., Uetrecht, J.P. & Rao, J. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat. Biotechnol. 32, 373–380 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.P. thanks Nanyang Technological University (Start-Up grant: NTUSUG: M4081627.120) and Singapore Ministry of Education (Academic Research Fund Tier 1 RG133/15 M4011559 and Tier 2 MOE2016-T2-1-098) for financial support. H.D. thanks Singapore Ministry of Education (Academic Research Fund Tier 2 MOE2015-T2-1-112 and Tier 3 MOE2013-T3-1-002) for financial support. J.V.J. thanks NIH HL 137187 and NIH HL 117048 grants for financial support.

Author information

Authors and Affiliations

Authors

Contributions

K.P. conceived and designed the study. Q.M. performed the nanoparticle synthesis and in vitro experiments. Q.M., C.X., X.Z. and Y. L. performed the in vivo experiments. K.P., Q.M., H.D., X. L. and J.V.J. contributed to the analysis and interpretation of results and preparation of the manuscript draft. K.P., Q.M., H.D., X.L., J.V.J. and all other authors contributed to the writing of this paper.

Corresponding author

Correspondence to Kanyi Pu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–40 and Supplementary Table 1 (PDF 28288 kb)

Life Sciences Reporting Summary (PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Q., Xie, C., Zhen, X. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol 35, 1102–1110 (2017). https://doi.org/10.1038/nbt.3987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing