Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Making individualized drugs a reality

An Erratum to this article was published on 01 August 2017

This article has been updated

Magistral drug preparation offers a model to circumvent many of the technological, regulatory and financial challenges that prevent provision of the right drug at the right time to the right patient.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magistral production in a laminar flow at the Transvaal Pharmacy, a local pharmacy in The Hague, The Netherlands.

Change history

  • 05 June 2017

    In the version of this article initially published, the line “Editor’s note: This article has been peer-reviewed.” was omitted. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Olfson, M. & Marcus, S.C. Health Aff. (Millwood) 32, 1116–1125 (2013).

    Article  Google Scholar 

  2. Le Tourneau, C. et al. Lancet Oncol. 16, 1324–1334 (2015).

    Article  CAS  Google Scholar 

  3. Pirmohamed, M. et al. Br. Med. J. 329, 15–19 (2004).

    Article  Google Scholar 

  4. Jameson, J. & Longo, D.L. N. Engl. J. Med. 372, 2229–2234 (2015).

    Article  CAS  Google Scholar 

  5. Faulkner, E. et al. Value Health 15, 1162–1171 (2012).

    Article  Google Scholar 

  6. Carrera, P.M. & Ormond, M. Maturitas 82, 94–99 (2015).

    Article  Google Scholar 

  7. Cohen, J.P. Nat. Biotechnol. 29, 751–756 (2012).

    CAS  Google Scholar 

  8. de Bono, J.S. & Ashworth, A. Nature 467, 543–549 (2010).

    Article  CAS  Google Scholar 

  9. Damkier, P. Int. J. Clin. Pharm. 37, 669–670 (2015).

    Article  Google Scholar 

  10. Collins, F.S. & Varmus, H. N. Engl. J. Med. 372, 793–795 (2015).

    Article  CAS  Google Scholar 

  11. Okie, S. N. Engl. J. Med. 361, 737–740 (2009).

    Article  CAS  Google Scholar 

  12. Avorn, J. N. Engl. J. Med. 367, 193–197 (2012).

    Article  CAS  Google Scholar 

  13. Frueh, F.W. Value Health 16 Suppl, S27–S31 (2013).

    Article  Google Scholar 

  14. Fleck, L.M. Urol. Oncol. 32, 202–206 (2014).

    Article  Google Scholar 

  15. Kalia, M. Metabolism 62 Suppl 1, S1–14 (2013).

    Google Scholar 

  16. Moors, E.H., Cohen, A.F. & Schellekens, H. Drug Discov. Today 19, 1711–1720 (2014).

    Article  Google Scholar 

  17. European Public Assessment Report Glybera (EMA Website)

  18. Aronson, N. Ann. NY Acad. Sci. 1346, 81–89 (2015).

    Article  Google Scholar 

  19. Abernethy, A. et al. Clin. Cancer Res. 20, 1081–1086 (2014).

    Article  Google Scholar 

  20. Steger, K. et al. J. Biomol. Screen. 20, 545–551 (2015).

    Article  CAS  Google Scholar 

  21. Ge, X. et al. J. Am. Chem. Soc. 127, 11228–11229 (2005).

    Article  CAS  Google Scholar 

  22. Topol, E.J. N. Engl. J. Med. 351, 1707–1709 (2004).

    Article  CAS  Google Scholar 

  23. Minghetti, P., Pantano, D., Gennari, C.G. & Casiraghi, A. Health Policy 117, 328–333 (2014).

    Article  Google Scholar 

  24. Qureshi, N., Wesolowicz, L., Stievater, T. & Lin, A.T. J. Manag. Care Spec. Pharm. 20, 1183–1191 (2014).

    PubMed  Google Scholar 

  25. McKoy, J.M. et al. Transfusion 48, 1754–1762 (2008).

    Article  Google Scholar 

  26. Kooijman, M., van Meer, P.J., Moors, E.H. & Schellekens, H. Expert Opin. Drug Saf. 11, 797–801 (2012).

    Article  Google Scholar 

  27. van Meer, P.J. et al. MAbs 5, 810–816 (2013).

    Article  Google Scholar 

  28. Schneider, C.K. & Kalinke, U. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 50, 1213–1220 (2007).

    Article  CAS  Google Scholar 

  29. Patten, P.A. & Schellekens, H. Dev. Biol. 112, 81–97 (2003).

    CAS  Google Scholar 

  30. Bach, P.B., Conti, R.M., Muller, R.J., Schnorr, G.C. & Saltz, L.B. Br. Med. J. 352, i788 (2016).

    Article  Google Scholar 

  31. Ciriminna, R. et al. Nanoscale 6, 6293–6300 (2014).

    Article  CAS  Google Scholar 

  32. Gising, J., Odell, L.R. & Larhed, M. Org. Biomol. Chem. 10, 2713–2729 (2012).

    Article  CAS  Google Scholar 

  33. Szymkuć, S. et al. Angew. Chem. Int. Edn Engl. 55, 5904–5937 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huub Schellekens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schellekens, H., Aldosari, M., Talsma, H. et al. Making individualized drugs a reality. Nat Biotechnol 35, 507–513 (2017). https://doi.org/10.1038/nbt.3888

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3888

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing