Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development

Abstract

Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding of cell fate has been advanced by studying single-cell RNA-sequencing (RNA-seq) but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Unlike other methods, scTDA is a nonlinear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins, and long noncoding RNAs (lncRNAs). scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Topological analysis of longitudinal single-cell RNA-seq data.
Figure 2: Comparison of algorithms for ordering cellular states.
Figure 3: Differentiation of pluripotent mESCs into motor neurons (MN).
Figure 4: Cellular populations during motor neuron differentiation.
Figure 5: Differential gene expression in neurogenesis.
Figure 6: scTDA analysis of mouse and human developmental data sets.

Similar content being viewed by others

Accession codes

Primary accessions

ArrayExpress

Gene Expression Omnibus

References

  1. Jessell, T.M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 (2000).

    Article  CAS  Google Scholar 

  2. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  Google Scholar 

  3. Sances, S. et al. Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat. Neurosci. 19, 542–553 (2016).

    Article  CAS  Google Scholar 

  4. Phatnani, H.P. et al. Intricate interplay between astrocytes and motor neurons in ALS. Proc. Natl. Acad. Sci. USA 110, E756–E765 (2013).

    Article  CAS  Google Scholar 

  5. Bratt-Leal, A.M., Carpenedo, R.L. & McDevitt, T.C. Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol. Prog. 25, 43–51 (2009).

    Article  CAS  Google Scholar 

  6. Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F. & Theis, F.J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    Article  CAS  Google Scholar 

  7. Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637–645 (2016).

    Article  CAS  Google Scholar 

  8. Welch, J.D., Hartemink, A.J. & Prins, J.F. SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data. Genome Biol. 17, 106 (2016).

    Article  Google Scholar 

  9. Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243 (2016).

    Article  CAS  Google Scholar 

  10. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article  CAS  Google Scholar 

  11. Marco, E. et al. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc. Natl. Acad. Sci. USA 111, E5643–E5650 (2014).

    Article  CAS  Google Scholar 

  12. Chan, J.M., Carlsson, G. & Rabadan, R. Topology of viral evolution. Proc. Natl. Acad. Sci. USA 110, 18566–18571 (2013).

    Article  CAS  Google Scholar 

  13. Cámara, P.G., Levine, A.J. & Rabadán, R. Inference of Ancestral Recombination Graphs through Topological Data Analysis. PLoS Comput. Biol. 12, e1005071 (2016).

    Article  Google Scholar 

  14. Camara, P.G., Rosenbloom, D.I., Emmett, K.J., Levine, A.J. & Rabadan, R. Topological data analysis generates high-resolution, genome-wide maps of human recombination. Cell Syst. 3, 83–94 (2016).

    Article  CAS  Google Scholar 

  15. Nicolau, M., Levine, A.J. & Carlsson, G. Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival. Proc. Natl. Acad. Sci. USA 108, 7265–7270 (2011).

    Article  CAS  Google Scholar 

  16. Li, L. et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med. 7, 311ra174 (2015).

    Article  Google Scholar 

  17. Bendall, S.C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725 (2014).

    Article  CAS  Google Scholar 

  18. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015).

    Article  CAS  Google Scholar 

  19. Singh, G., Mémoli, F. & Carlsson, G.E. in SPBG 91–100 (Citeseer, 2007).

  20. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    Article  CAS  Google Scholar 

  21. Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    Article  Google Scholar 

  22. McDavid, A., Finak, G. & Gottardo, R. The contribution of cell cycle to heterogeneity in single-cell RNA-seq data. Nat. Biotechnol. 34, 591–593 (2016).

    Article  CAS  Google Scholar 

  23. Mi, H., Muruganujan, A., Casagrande, J.T. & Thomas, P.D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551–1566 (2013).

    Article  Google Scholar 

  24. Balmer, J.E. & Blomhoff, R. Gene expression regulation by retinoic acid. J. Lipid Res. 43, 1773–1808 (2002).

    Article  CAS  Google Scholar 

  25. Rhinn, M. & Dollé, P. Retinoic acid signalling during development. Development 139, 843–858 (2012).

    Article  CAS  Google Scholar 

  26. Gaunt, S.J. & Strachan, L. Temporal colinearity in expression of anterior Hox genes in developing chick embryos. Dev. Dyn. 207, 270–280 (1996).

    Article  CAS  Google Scholar 

  27. Zhang, X., Weissman, S.M. & Newburger, P.E. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol. 11, 777–787 (2014).

    Article  CAS  Google Scholar 

  28. Lin, M. et al. RNA-Seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS One 6, e23356 (2011).

    Article  CAS  Google Scholar 

  29. Mallo, M. & Alonso, C.R. The regulation of Hox gene expression during animal development. Development 140, 3951–3963 (2013).

    Article  CAS  Google Scholar 

  30. Dinger, M.E. et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 18, 1433–1445 (2008).

    Article  CAS  Google Scholar 

  31. Sommer, L., Ma, Q. & Anderson, D.J. neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 8, 221–241 (1996).

    Article  CAS  Google Scholar 

  32. Darnell, R.B. RNA protein interaction in neurons. Annu. Rev. Neurosci. 36, 243–270 (2013).

    Article  CAS  Google Scholar 

  33. Quesnel-Vallières, M., Irimia, M., Cordes, S.P. & Blencowe, B.J. Essential roles for the splicing regulator nSR100/SRRM4 during nervous system development. Genes Dev. 29, 746–759 (2015).

    Article  Google Scholar 

  34. Calarco, J.A. et al. Regulation of vertebrate nervous system alternative splicing and development by an SR-related protein. Cell 138, 898–910 (2009).

    Article  CAS  Google Scholar 

  35. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    Article  CAS  Google Scholar 

  36. Petropoulos, S. et al. Single-cell RNA-Seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).

    Article  CAS  Google Scholar 

  37. Telley, L. et al. Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351, 1443–1446 (2016).

    Article  CAS  Google Scholar 

  38. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  Google Scholar 

  39. Anders, S., Pyl, P.T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

    Article  CAS  Google Scholar 

  40. Stegle, O., Teichmann, S.A. & Marioni, J.C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

    Article  CAS  Google Scholar 

  41. Grün, D., Kester, L. & van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014).

    Article  Google Scholar 

  42. Kharchenko, P.V., Silberstein, L. & Scadden, D.T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014).

    Article  CAS  Google Scholar 

  43. Shalek, A.K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    Article  CAS  Google Scholar 

  44. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013).

    Article  CAS  Google Scholar 

  45. Edelsbrunner, H., Letscher, D. & Zomorodian, A. Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002).

    Article  Google Scholar 

  46. Zomorodian, A. & Carlsson, G. Computing persistent homology. Discrete Comput. Geom. 33, 249–274 (2005).

    Article  Google Scholar 

  47. Binns, D. et al. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25, 3045–3046 (2009).

    Article  CAS  Google Scholar 

  48. UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).

  49. Zhao, Y. et al. NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 44, D203–D208 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Jessell, N. Francis, and H. Phatnani for critical reading of the manuscript. A.H.R. and T.M. thank the New York Genome Center and D. Goldstein for sequencing support, S. Morton for providing Engrailed antibody, and P. Sims for experimental discussions. P.G.C. and R.R. thank A.J. Levine, G. Carlsson, F. Abate, I. Filip, S. Zairis, U. Rubin, and P. van Nieuwenhuizen for useful comments and discussions, O.T. Elliott for technical support with the online database, and Ayasdi Inc. for technical support. The work of P.G.C. and R.R. is supported by the NIH grants U54-CA193313-01 and R01GM117591. The work of A.H.R., E.K.K., T.J.R. and T.M. is supported by ALS Therapy Alliance grant ATA-2013-F-056 and NIH grant NS088992.

Author information

Authors and Affiliations

Authors

Contributions

P.G.C. and R.R. developed the topology-based computational approach (scTDA) and applied it to single cell RNA sequencing data. A.H.R., E.K.K., and T.M. designed all experiments. A.H.R., E.K.K., and T.J.R. conducted experiments. I.S. conducted all flow cytometry. A.H.R., P.G.C., E.K.K., T.M., and R.R. analyzed the data and wrote the manuscript.

Corresponding authors

Correspondence to Tom Maniatis or Raul Rabadan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20, Supplementary Table 1, and Supplementary Notes 1 and 2 (PDF 9143 kb)

Supplementary Tables 2–4

All genes; Ontology; lncRNAs. (XLSX 3377 kb)

Supplementary Table 5

All genes characterization of the expression profile in the topological representation of 80 embryonic (E18.5) mouse lung 35 epithelial cells. (XLSX 542 kb)

Supplementary Table 6

Characterization of the expression profile in the topological representation of 1,529 individual cells from 88 human preimplantation embryos. (XLSX 1929 kb)

Supplementary Table 7

All genes characterization of the expression profile in the topological representation of 272 newborn neurons from the mouse neocortex. (XLSX 1660 kb)

Supplementary Table 8

Barcoded reverse transcription primers utilized in motor neuron differentiation experiment 2. (XLSX 5 kb)

Supplementary Code

Python code for single-cell topological data analysis (scTDA). Also available at https://github.com/RabadanLab/scTDA. (TXT 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizvi, A., Camara, P., Kandror, E. et al. Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nat Biotechnol 35, 551–560 (2017). https://doi.org/10.1038/nbt.3854

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing