Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome

Abstract

Large genome-mapping consortia and thousands of genome-wide association studies have identified non-protein-coding elements in the genome as having a central role in various biological processes. However, decoding the functions of the millions of putative regulatory elements discovered in these studies remains challenging. CRISPR–Cas9-based epigenome editing technologies have enabled precise perturbation of the activity of specific regulatory elements. Here we describe CRISPR–Cas9-based epigenomic regulatory element screening (CERES) for improved high-throughput screening of regulatory element activity in the native genomic context. Using dCas9KRAB repressor and dCas9p300 activator constructs and lentiviral single guide RNA libraries to target DNase I hypersensitive sites surrounding a gene of interest, we carried out both loss- and gain-of-function screens to identify regulatory elements for the β-globin and HER2 loci in human cells. CERES readily identified known and previously unidentified regulatory elements, some of which were dependent on cell type or direction of perturbation. This technology allows the high-throughput functional annotation of putative regulatory elements in their native chromosomal context.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CRISPR–Cas9-based epigenetic regulatory element screening (CERES) identifies regulatory elements of the β-globin locus in a loss-of-function screen.
Figure 2: A dCas9KRAB loss-of-function screen in A431 cells identified regulatory elements of HER2.
Figure 3: A dCas9p300 gain-of-function screen in HEK293T cells identified regulatory elements of HER2.
Figure 4: dCas9p300 and dCas9KRAB remodel epigenetic marks near novel regulatory elements identified from screens.
Figure 5: Comparison of HER2-activation screens in different cell types.
Figure 6: Comparison of HER2 activation and repression screens.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Thurman, R.E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  Google Scholar 

  2. Hindorff, L.A., Junkins, H.A., Mehta, J.P. & Manolio, T.A. A Catalog of Published Genome-Wide Association Studies. http://www.genome.gov/gwastudies (2009).

  3. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  4. Bernstein, B.E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  Google Scholar 

  5. Arnold, C.D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

    Article  CAS  Google Scholar 

  6. Vockley, C.M. et al. Massively parallel quantification of the regulatory effects of noncoding genetic variation in a human cohort. Genome Res. 25, 1206–1214 (2015).

    Article  CAS  Google Scholar 

  7. Vockley, C.M. et al. Direct GR binding sites potentiate clusters of TF binding across the human genome. Cell 166, 1269–1281 (2016).

    Article  CAS  Google Scholar 

  8. Barrangou, R. & Doudna, J.A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941 (2016).

    Article  CAS  Google Scholar 

  9. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  10. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  11. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  Google Scholar 

  12. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  Google Scholar 

  13. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  Google Scholar 

  14. Wang, T., Wei, J.J., Sabatini, D.M. & Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  Google Scholar 

  15. Koike-Yusa, H., Li, Y., Tan, E.P., Del Castillo Velasco-Herrera, M. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014).

    Article  CAS  Google Scholar 

  16. Canver, M.C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    Article  CAS  Google Scholar 

  17. Korkmaz, G. et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat. Biotechnol. 34, 192–198 (2016).

    Article  CAS  Google Scholar 

  18. Rajagopal, N. et al. High-throughput mapping of regulatory DNA. Nat. Biotechnol. 34, 167–174 (2016).

    Article  CAS  Google Scholar 

  19. Diao, Y. et al. A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Res. 26, 397–405 (2016).

    Article  CAS  Google Scholar 

  20. Sanjana, N.E. et al. High-resolution interrogation of functional elements in the noncoding genome. Science 353, 1545–1549 (2016).

    Article  CAS  Google Scholar 

  21. Vierstra, J. et al. Functional footprinting of regulatory DNA. Nat. Methods 12, 927–930 (2015).

    Article  CAS  Google Scholar 

  22. Housden, B.E. et al. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat. Rev. Genet. 18, 24–40 (2017).

    Article  CAS  Google Scholar 

  23. Thakore, P.I., Black, J.B., Hilton, I.B. & Gersbach, C.A. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13, 127–137 (2016).

    Article  CAS  Google Scholar 

  24. Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  CAS  Google Scholar 

  25. Gilbert, L.A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    Article  CAS  Google Scholar 

  26. Gao, X. et al. Reprogramming to pluripotency using designer TALE transcription factors targeting enhancers. Stem Cell Reports 1, 183–197 (2013).

    Article  CAS  Google Scholar 

  27. Gao, X. et al. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res. 42, e155 (2014).

    Article  Google Scholar 

  28. Gilbert, L.A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    Article  CAS  Google Scholar 

  29. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

    Article  CAS  Google Scholar 

  30. Hilton, I.B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    Article  CAS  Google Scholar 

  31. Kearns, N.A. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401–403 (2015).

    Article  CAS  Google Scholar 

  32. Thakore, P.I. et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015).

    Article  CAS  Google Scholar 

  33. Xu, X. et al. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2, 16009 (2016).

    Article  CAS  Google Scholar 

  34. Choudhury, S.R., Cui, Y., Lubecka, K., Stefanska, B. & Irudayaraj, J. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7, 46545–46556 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    Article  CAS  Google Scholar 

  36. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    Article  CAS  Google Scholar 

  37. Liu, X.S. et al. Editing DNA methylation in the mammalian genome. Cell 167, 233–247 (2016).

    Article  CAS  Google Scholar 

  38. Boyle, A.P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    Article  CAS  Google Scholar 

  39. Sabo, P.J. et al. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat. Methods 3, 511–518 (2006).

    Article  CAS  Google Scholar 

  40. Hardison, R. et al. Locus control regions of mammalian β-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights. Gene 205, 73–94 (1997).

    Article  CAS  Google Scholar 

  41. Baron, M.H. Developmental regulation of the vertebrate globin multigene family. Gene Expr. 6, 129–137 (1996).

    CAS  PubMed  Google Scholar 

  42. Dean, A., Ley, T.J., Humphries, R.K., Fordis, M. & Schechter, A.N. Inducible transcription of five globin genes in K562 human leukemia cells. Proc. Natl. Acad. Sci. USA 80, 5515–5519 (1983).

    Article  CAS  Google Scholar 

  43. Song, L. et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 21, 1757–1767 (2011).

    Article  CAS  Google Scholar 

  44. Vu, T. & Claret, F.X. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front. Oncol. 2, 62 (2012).

    Article  Google Scholar 

  45. Slamon, D.J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    Article  CAS  Google Scholar 

  46. Gajria, D. & Chandarlapaty, S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev. Anticancer Ther. 11, 263–275 (2011).

    Article  CAS  Google Scholar 

  47. Hurtado, A. et al. Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature 456, 663–666 (2008).

    Article  CAS  Google Scholar 

  48. Chu, P.-Y., Li, T.-K., Ding, S.-T., Lai, I.R. & Shen, T.-L. EGF-induced Grb7 recruits and promotes Ras activity essential for the tumorigenicity of Sk-Br3 breast cancer cells. J. Biol. Chem. 285, 29279–29285 (2010).

    Article  CAS  Google Scholar 

  49. Fulco, C.P. et al. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354, 769–773 (2016).

    Article  CAS  Google Scholar 

  50. Findlay, G.M., Boyle, E.A., Hause, R.J., Klein, J.C. & Shendure, J. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513, 120–123 (2014).

    Article  CAS  Google Scholar 

  51. Sanjana, N.E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).

    Article  CAS  Google Scholar 

  52. Song, L. & Crawford, G.E. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. 2010, pdb.prot5384 (2010).

    Article  Google Scholar 

  53. O'Brien, A. & Bailey, T.L. GT-Scan: identifying unique genomic targets. Bioinformatics 30, 2673–2675 (2014).

    Article  CAS  Google Scholar 

  54. Salmon, P. & Trono, D. Production and titration of lentiviral vectors. Curr. Protoc. Neurosci. Chapter 4, Unit 4.21 (2006).

  55. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  56. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thorek Memorial Foundation, the US National Institutes of Health (NIH) (grants R01DA036865, R41GM119914, and U01HG007900 to G.E.C., T.E.R., and C.A.G.; core facility grant P30AR066527; Biotechnology Training Grant T32GM008555 to T.S.K. and J.B.B.; Director's New Innovator Award DP2OD008586 to C.A.G.), and the National Science Foundation (NSF) (Faculty Early Career Development (CAREER) Award CBET-1151035 to C.A.G.).

Author information

Authors and Affiliations

Authors

Contributions

T.S.K., G.E.C., T.E.R., and C.A.G. designed experiments. T.S.K., J.B.B., A.S., L.S., and M.C. performed the experiments. I.B.H. provided critical reagents. T.S.K., G.E.C., T.E.R., and C.A.G. analyzed the data. T.S.K. and C.A.G. wrote the manuscript, with contributions by all others authors.

Corresponding authors

Correspondence to Gregory E Crawford, Timothy E Reddy or Charles A Gersbach.

Ethics declarations

Competing interests

T.S.K., J.B.B., I.B.H., G.E.C., T.E.R., and C.A.G. are named inventors on patent applications related to genome engineering. T.S.K., G.E.C., T.E.R., and C.A.G. are founders of Element Genomics.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 and Supplementary Tables 1–7 (PDF 4173 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klann, T., Black, J., Chellappan, M. et al. CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol 35, 561–568 (2017). https://doi.org/10.1038/nbt.3853

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing