Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oligonucleotide therapies for disorders of the nervous system

Abstract

Oligonucleotide therapies are currently experiencing a resurgence driven by advances in backbone chemistry and discoveries of novel therapeutic pathways that can be uniquely and efficiently modulated by the oligonucleotide drugs. A quarter of a century has passed since oligonucleotides were first applied in living mammalian brain to modulate gene expression. Despite challenges in delivery to the brain, multiple oligonucleotide-based compounds are now being developed for treatment of human brain disorders by direct delivery inside the blood brain barrier (BBB). Notably, the first new central nervous system (CNS)-targeted oligonucleotide-based drug (nusinersen/Spinraza) was approved by US Food and Drug Administration (FDA) in late 2016 and several other compounds are in advanced clinical trials. Human testing of brain-targeted oligonucleotides has highlighted unusual pharmacokinetic and pharmacodynamic properties of these compounds, including complex active uptake mechanisms, low systemic exposure, extremely long half-lives, accumulation and gradual release from subcellular depots. Further work on oligonucleotide uptake, development of formulations for delivery across the BBB and relevant disease biology studies are required for further optimization of the oligonucleotide drug development process for brain applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected milestones from the history of ODN drug development.
Figure 2: Oligonucleotide modifications.
Figure 3: Proposed oligonucleotide uptake mechanisms.

Similar content being viewed by others

References

  1. Banks, W.A. et al. Delivery across the blood-brain barrier of antisense directed against amyloid beta: reversal of learning and memory deficits in mice overexpressing amyloid precursor protein. J. Pharmacol. Exp. Ther. 297, 1113–1121 (2001).

    CAS  PubMed  Google Scholar 

  2. Farr, S.A., Erickson, M.A., Niehoff, M.L., Banks, W.A. & Morley, J.E. Central and peripheral administration of antisense oligonucleotide targeting amyloid-β protein precursor improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (AβPPswe) mice. J. Alzheimer's Dis. 40, 1005–1016 (2014).

    Article  CAS  Google Scholar 

  3. Juliano, R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44, 6518–6548 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eckstein, F. Nucleoside phosphorothioates. J. Am. Chem. Soc. 92, 4718–4723 (1970).

    Article  CAS  PubMed  Google Scholar 

  5. Stirchak, E.P., Summerton, J.E. & Weller, D.D. Uncharged stereoregular nucleic acid analogs: 2. Morpholino nucleoside oligomers with carbamate internucleoside linkages. Nucleic Acids Res. 17, 6129–6141 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kupryushkin, M.S., Pyshnyi, D.V. & Stetsenko, D.A. Phosphoryl guanidines: a new type of nucleic acid analogues. Acta Naturae 6, 116–118 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nielsen, P.E., Egholm, M., Berg, R.H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Bobst, A.M., Rottman, F. & Cerutti, P.A. Effect of the methylation of the 2′-hydroxyl groups in polyadenylic acid on its structure in weakly acidic and neutral solutions and on its capability to form ordered complexes with polyuridylic acid. J. Mol. Biol. 46, 221–234 (1969).

    Article  CAS  PubMed  Google Scholar 

  9. Evers, M.M. & Toonen, L.J. van Roon-Mom, W.M. Antisense oligonucleotides in therapy for neurodegenerative disorders. Adv. Drug Deliv. Rev. 87, 90–103 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Cook, P.D. & Guinosso, C.J. 2′-O-modified nucleosides and phosphoramidites. US patent no. 5,914,396 (1995).

  11. Wahlestedt, C. et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc. Natl. Acad. Sci. USA 97, 5633–5638 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goyenvalle, A. et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat. Med. 21, 270–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Hua, Y. et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478, 123–126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Passini, M.A. et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci. Transl. Med. 3, 72ra18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Williams, J.H. et al. Oligonucleotide-mediated survival of motor neuron protein expression in CNS improves phenotype in a mouse model of spinal muscular atrophy. J. Neurosci. 29, 7633–7638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Porensky, P.N. et al. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum. Mol. Genet. 21, 1625–1638 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Zhou, H. et al. A novel morpholino oligomer targeting ISS-N1 improves rescue of severe spinal muscular atrophy transgenic mice. Hum. Gene Ther. 24, 331–342 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ho, W., Zhang, X.Q. & Xu, X. Biomaterials in siRNA Delivery: A Comprehensive Review. Adv. Healthc. Mater. 5, 2715–2731 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Ozcan, G., Ozpolat, B., Coleman, R.L., Sood, A.K. & Lopez-Berestein, G. Preclinical and clinical development of siRNA-based therapeutics. Adv. Drug Deliv. Rev. 87, 108–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiu, Y., Lam, J.K., Leung, S.W. & Liang, W. Delivery of RNAi therapeutics to the airways-from bench to bedside. Molecules 21, E1249 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, H.J., Kim, A., Miyata, K. & Kataoka, K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv. Drug Deliv. Rev. 104, 61–77 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Lima, W.F., De Hoyos, C.L., Liang, X.H. & Crooke, S.T. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery. Nucleic Acids Res. 44, 3351–3363 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller, V.M. et al. Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci. USA 100, 7195–7200 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ward, A.J., Norrbom, M., Chun, S., Bennett, C.F. & Rigo, F. Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides. Nucleic Acids Res. 42, 5871–5879 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haas, M. et al. European Medicines Agency review of ataluren for the treatment of ambulant patients aged 5 years and older with Duchenne muscular dystrophy resulting from a nonsense mutation in the dystrophin gene. Neuromuscul. Disord. 25, 5–13 (2015).

    Article  PubMed  Google Scholar 

  26. Kerem, E. et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir. Med. 2, 539–547 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu-Motohashi, Y., Miyatake, S., Komaki, H., Takeda, S. & Aoki, Y. Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: from discovery to clinical trials. Am. J. Transl. Res. 8, 2471–2489 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Arechavala-Gomeza, V., Khoo, B. & Aartsma-Rus, A. Splicing modulation therapy in the treatment of genetic diseases. Appl. Clin. Genet. 7, 245–252 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pereira, P., Queiroz, J.A., Figueiras, A. & Sousa, F. Current progress on microRNAs-based therapeutics in neurodegenerative diseases. Wiley Interdiscip. Rev. RNA http://dx.doi.org/10.1002/wrna.1409 (2016).

  30. Catalanotto, C., Cogoni, C. & Zardo, G. MicroRNA in control of gene expression: an overview of nuclear functions. Int. J. Mol. Sci. 17, E1712 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Cheng, C.J. et al. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Wahlestedt, C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat. Rev. Drug Discov. 12, 433–446 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Nakagawa, S. & Kageyama, Y. Nuclear lncRNAs as epigenetic regulators-beyond skepticism. Biochim. Biophys. Acta 1839, 215–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Magistri, M., Faghihi, M.A., St Laurent, G., III & Wahlestedt, C. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet. 28, 389–396 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  PubMed  Google Scholar 

  36. Modarresi, F. et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat. Biotechnol. 30, 453–459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Halley, P. et al. Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep. 6, 222–230 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hsiao, J. et al. Upregulation of haploinsufficient gene expression in the brain by targeting a long non-coding RNA improves seizure phenotype in a model of Dravet syndrome. EBioMedicine 9, 257–277 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao, J. et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Janowski, B.A. et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat. Chem. Biol. 3, 166–173 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Chu, Y., Yue, X., Younger, S.T., Janowski, B.A. & Corey, D.R. Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res. 38, 7736–7748 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Portnoy, V. et al. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res. 26, 320–335 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, B. et al. Small-activating RNA can change nucleosome positioning in human fibroblasts. J. Biomol. Screen. 21, 634–642 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Hu, J. et al. Promoter-associated small double-stranded RNA interacts with heterogeneous nuclear ribonucleoprotein A2/B1 to induce transcriptional activation. Biochem. J. 447, 407–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Kleinman, M.E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591–597 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koller, E. et al. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res. 39, 4795–4807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Juliano, R.L., Ming, X. & Nakagawa, O. Cellular uptake and intracellular trafficking of antisense and siRNA oligonucleotides. Bioconjug. Chem. 23, 147–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Wagenaar, T.R. et al. Identification of the endosomal sorting complex required for transport-I (ESCRT-I) as an important modulator of anti-miR uptake by cancer cells. Nucleic Acids Res. 43, 1204–1215 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Shen, W., Liang, X.H. & Crooke, S.T. Phosphorothioate oligonucleotides can displace NEAT1 RNA and form nuclear paraspeckle-like structures. Nucleic Acids Res. 42, 8648–8662 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Naganuma, T. & Hirose, T. Paraspeckle formation during the biogenesis of long non-coding RNAs. RNA Biol. 10, 456–461 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liang, X.H. et al. Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2′-modifications and enhances antisense activity. Nucleic Acids Res. 44, 3892–3907 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shemesh, C.S. et al. Pharmacokinetic and pharmacodynamic investigations of ION-353382, a model antisense oligonucleotide: using alpha-2-macroglobulin and murinoglobulin double-knockout mice. Nucleic Acid Ther. 26, 223–235 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Zhu, J.Y. et al. Efficient nuclear drug translocation and improved drug efficacy mediated by acidity-responsive boronate-linked dextran/cholesterol nanoassembly. Biomaterials 52, 281–290 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Liang, X.H., Shen, W., Sun, H., Prakash, T.P. & Crooke, S.T. TCP1 complex proteins interact with phosphorothioate oligonucleotides and can co-localize in oligonucleotide-induced nuclear bodies in mammalian cells. Nucleic Acids Res. 42, 7819–7832 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miller, C.M. et al. Stabilin-1 and Stabilin-2 are specific receptors for the cellular internalization of phosphorothioate-modified antisense oligonucleotides (ASOs) in the liver. Nucleic Acids Res. 44, 2782–2794 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ezzat, K. et al. Self-assembly into nanoparticles is essential for receptor mediated uptake of therapeutic antisense oligonucleotides. Nano Lett. 15, 4364–4373 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ezzat, K. et al. Scavenger receptor-mediated uptake of cell-penetrating peptide nanocomplexes with oligonucleotides. FASEB J. 26, 1172–1180 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Lorenz, P., Baker, B.F., Bennett, C.F. & Spector, D.L. Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies. Mol. Biol. Cell 9, 1007–1023 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marcusson, E.G., Bhat, B., Manoharan, M., Bennett, C.F. & Dean, N.M. Phosphorothioate oligodeoxyribonucleotides dissociate from cationic lipids before entering the nucleus. Nucleic Acids Res. 26, 2016–2023 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heemskerk, H. et al. Preclinical PK and PD studies on 2′-O-methyl-phosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Mol. Ther. 18, 1210–1217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hammond, S.M. et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 113, 10962–10967 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Craft, S. et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch. Neurol. 69, 29–38 (2012).

    Article  PubMed  Google Scholar 

  63. Hashizume, R. et al. New therapeutic approach for brain tumors: Intranasal delivery of telomerase inhibitor GRN163. Neuro-oncol. 10, 112–120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ma, Q. et al. Inhibition of microRNA-210 provides neuroprotection in hypoxic-ischemic brain injury in neonatal rats. Neurobiol. Dis. 89, 202–212 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ferrés-Coy, A. et al. Therapeutic antidepressant potential of a conjugated siRNA silencing the serotonin transporter after intranasal administration. Mol. Psychiatry 21, 328–338 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Bleier, B.S., Kohman, R.E., Feldman, R.E., Ramanlal, S. & Han, X. Permeabilization of the blood-brain barrier via mucosal engrafting: implications for drug delivery to the brain. PLoS One 8, e61694 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wahlestedt, C., Yee, F., Yoo, H., Koob, G.F. & Heilig, M. in Molecular Neurobiology, Proceedings of the second NIMH Conference (eds. Zalcman, S., Scheller, R. & Tsien, R.) (1992).

  68. Wahlestedt, C. et al. Antisense oligodeoxynucleotides to NMDA-R1 receptor channel protect cortical neurons from excitotoxicity and reduce focal ischaemic infarctions. Nature 363, 260–263 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Wahlestedt, C., Pich, E.M., Koob, G.F., Yee, F. & Heilig, M. Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxynucleotides. Science 259, 528–531 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Wahlestedt, C. Antisense oligonucleotide strategies in neuropharmacology. Trends Pharmacol. Sci. 15, 42–46 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Standifer, K.M., Chien, C.C., Wahlestedt, C., Brown, G.P. & Pasternak, G.W. Selective loss of delta opioid analgesia and binding by antisense oligodeoxynucleotides to a delta opioid receptor. Neuron 12, 805–810 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Geary, R.S., Norris, D., Yu, R. & Bennett, C.F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 87, 46–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Rigo, F. et al. Pharmacology of a central nervous system delivered 2′-O-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J. Pharmacol. Exp. Ther. 350, 46–55 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Verhaart, I.E. et al. Dose-dependent pharmacokinetic profiles of 2′-O-methyl phosphorothioate antisense oligonucleotidesin mdx mice. Nucleic Acid Ther. 23, 228–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Kordasiewicz, H.B. et al. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 74, 1031–1044 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miller, T.M. et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 12, 435–442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shen, L. et al. Effects of repeated complement activation associated with chronic treatment of cynomolgus monkeys with 2′-o-methoxyethyl modified antisense oligonucleotide. Nucleic Acid Ther. 26, 236–249 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Shen, L. et al. Mechanistic understanding for the greater sensitivity of monkeys to antisense oligonucleotide-mediated complement activation compared with humans. J. Pharmacol. Exp. Ther. 351, 709–717 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Henry, S.P. et al. Considerations for the characterization and interpretation of results related to alternative complement activation in monkeys associated with oligonucleotide-based therapeutics. Nucleic Acid Ther. 26, 210–215 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Voit, T. et al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol. 13, 987–996 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Engelhardt, J.A. Comparative renal toxicopathology of antisense oligonucleotides. Nucleic Acid Ther. 26, 199–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Merlini, L. & Sabatelli, P. Improving clinical trial design for Duchenne muscular dystrophy. BMC Neurol. 15, 153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rigo, F., Hua, Y., Krainer, A.R. & Bennett, C.F. Antisense-based therapy for the treatment of spinal muscular atrophy. J. Cell Biol. 199, 21–25 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chiriboga, C.A. et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 86, 890–897 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Haché, M. et al. Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience. J. Child Neurol. 31, 899–906 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hua, Y. et al. Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models. Genes Dev. 29, 288–297 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sintusek, P. et al. Histopathological defects in intestine in severe spinal muscular atrophy mice are improved by systemic antisense oligonucleotide treatment. PLoS One 11, e0155032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bogdanik, L.P. et al. Systemic, postsymptomatic antisense oligonucleotide rescues motor unit maturation delay in a new mouse model for type II/III spinal muscular atrophy. Proc. Natl. Acad. Sci. USA 112, E5863–E5872 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Osman, E.Y. et al. Morpholino antisense oligonucleotides targeting intronic repressor Element1 improve phenotype in SMA mouse models. Hum. Mol. Genet. 23, 4832–4845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Evers, M.M. et al. Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon. Neurobiol. Dis. 58, 49–56 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Cavalieri, S., Pozzi, E., Gatti, R.A. & Brusco, A. Deep-intronic ATM mutation detected by genomic resequencing and corrected in vitro by antisense morpholino oligonucleotide (AMO). Eur. J. Hum. Genet. 21, 774–778 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Donnelly, C.J. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lagier-Tourenne, C. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl. Acad. Sci. USA 110, E4530–E4539 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sareen, D. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5, 208ra149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jiang, J. et al. Gain of toxicity from ALS/FTD-linked repeat expansions in C9ORF72 is alleviated by antisense oligonucleotides targeting GGGGCC-containing RNAs. Neuron 90, 535–550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gotkine, M. et al. Presymptomatic treatment with acetylcholinesterase antisense oligonucleotides prolongs survival in ALS (G93A-SOD1) mice. BioMed Res. Int. 2013, 845345 (2013).

    PubMed  Google Scholar 

  97. Koval, E.D. et al. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Hum. Mol. Genet. 22, 4127–4135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Southwell, A.L. et al. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol. Ther. 22, 2093–2106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Benson, M.D. et al. Suppression of choroid plexus transthyretin levels by antisense oligonucleotide treatment. Amyloid 17, 43–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Sztainberg, Y. et al. Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides. Nature 528, 123–126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Meng, L. et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518, 409–412 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Hinrich, A.J. et al. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides. EMBO Mol. Med. 8, 328–345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kim, J. et al. microRNA-33 regulates ApoE lipidation and amyloid-β metabolism in the brain. J. Neurosci. 35, 14717–14726 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jan, A. et al. Direct intracerebral delivery of a miR-33 antisense oligonucleotide into mouse brain increases brain ABCA1 expression. [Corrected]. Neurosci. Lett. 598, 66–72 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Farr, S.A. et al. Antisense oligonucleotide against GSK-3β in brain of SAMP8 mice improves learning and memory and decreases oxidative stress: Involvement of transcription factor Nrf2 and implications for Alzheimer disease. Free Radic. Biol. Med. 67, 387–395 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. DeVos, S.L. et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 9, eaag0481 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Obika, S. et al. Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3′-endo sugar puckering. Tetrahedr. Lett. 38, 8735–8738 (1997).

    Article  CAS  Google Scholar 

  108. Steffens, R. & Leumann, C.J. Synthesis and thermodynamic and biophysical properties of tricyclo-DNA. J. Am. Chem. Soc. 121, 3249–3255 (1999).

    Article  CAS  Google Scholar 

  109. Zamecnik, P.C. & Stephenson, M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 75, 280–284 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Stephenson, M.L. & Zamecnik, P.C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA 75, 285–288 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Donis-Keller, H. Site specific enzymatic cleavage of RNA. Nucleic Acids Res. 7, 179–192 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857 (1983).

    Article  CAS  PubMed  Google Scholar 

  113. Bass, B.L. & Cech, T.R. Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA. Nature 308, 820–826 (1984).

    Article  CAS  PubMed  Google Scholar 

  114. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Wlotzka, B. et al. In vivo properties of an anti-GnRH Spiegelmer: an example of an oligonucleotide-based therapeutic substance class. Proc. Natl. Acad. Sci. USA 99, 8898–8902 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Azad, R.F., Driver, V.B., Tanaka, K., Crooke, R.M. & Anderson, K.P. Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob. Agents Chemother. 37, 1945–1954 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kumar, R. et al. The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg. Med. Chem. Lett. 8, 2219–2222 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. DeVos, S.L. et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci. Transl. Med. 9, 374 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RNA-related work in C.W.'s laboratory is currently funded by NIH grants DA035592, NS071674 and AA023781.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claes Wahlestedt.

Ethics declarations

Competing interests

O. Khorkova is employed by OPKO Health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorkova, O., Wahlestedt, C. Oligonucleotide therapies for disorders of the nervous system. Nat Biotechnol 35, 249–263 (2017). https://doi.org/10.1038/nbt.3784

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3784

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research