Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The chemical evolution of oligonucleotide therapies of clinical utility

Abstract

After nearly 40 years of development, oligonucleotide therapeutics are nearing meaningful clinical productivity. One of the key advantages of oligonucleotide drugs is that their delivery and potency are derived primarily from the chemical structure of the oligonucleotide whereas their target is defined by the base sequence. Thus, as oligonucleotides with a particular chemical design show appropriate distribution and safety profiles for clinical gene silencing in a particular tissue, this will open the door to the rapid development of additional drugs targeting other disease-associated genes in the same tissue. To achieve clinical productivity, the chemical architecture of the oligonucleotide needs to be optimized with a combination of sugar, backbone, nucleobase, and 3′- and 5′-terminal modifications. A portfolio of chemistries can be used to confer drug-like properties onto the oligonucleotide as a whole, with minor chemical changes often translating into major improvements in clinical efficacy. One outstanding challenge in oligonucleotide chemical development is the optimization of chemical architectures to ensure long-term safety. There are multiple designs that enable effective targeting of the liver, but a second challenge is to develop architectures that enable robust clinical efficacy in additional tissues.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The key advantage of an informational drug is that the pharmacophore (molecular features that determine target specificity) and the dianophore (molecular features that determine tissue distribution and metabolism) can be optimized separately.
Figure 2: Structures of chemical modifications discussed in this review.
Figure 3: The evolution of RNase H antisense and RNAi technologies, including key chemical modifications and structural configurations that have enabled major advances toward clinical efficacy.
Figure 4: Key events in antisense and RNAi therapeutics mapped to the Technology Curve.

References

  1. Cohen, J.S. Informational drugs: a new concept in pharmacology. Antisense Res. Dev. 1, 191–193 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Burnett, J.C. & Rossi, J.J. RNA-based therapeutics: current progress and future prospects. Chem. Biol. 19, 60–71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yamamoto, T., Nakatani, M., Narukawa, K. & Obika, S. Antisense drug discovery and development. Future Med. Chem. 3, 339–365 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Lindow, M. & Kauppinen, S. Discovering the first microRNA-targeted drug. J. Cell Biol. 199, 407–412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Keefe, A.D., Pai, S. & Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 9, 537–550 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sullenger, B.A. & Nair, S. From the RNA world to the clinic. Science 352, 1417–1420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koch, T., Shim, I., Lindow, M., Ørum, H. & Bohr, H.G. Quantum mechanical studies of DNA and LNA. Nucleic Acid Ther. 24, 139–148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deleavey, G.F. & Damha, M.J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol. 19, 937–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Sharma, V.K. & Watts, J.K. Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med. Chem. 7, 2221–2242 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Wan, W.B. & Seth, P.P. The medicinal chemistry of therapeutic oligonucleotides. J. Med. Chem. 59, 9645–9667 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Ito, K.R. & Obika, S. in Comprehensive Medicinal Chemistry 3rd edn. (eds. Chackalamannil, S. et al.) http://dx.doi.org/10.1016/b978-0-12-409547-2.12420-5 (Elsevier, in the press).

  12. Stephenson, M.L. & Zamecnik, P.C. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. USA 75, 285–288 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zamecnik, P.C. & Stephenson, M.L. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 75, 280–284 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bennett, C.F. & Swayze, E.E. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol. 50, 259–293 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Eckstein, F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 24, 374–387 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Fluiter, K. Antisense Drug Technology: Principles, Strategies, and Applications. Edited by Stanley T. Crooke. ChemMedChem 4, 879 (2009).

    Article  CAS  Google Scholar 

  17. Geary, R.S., Norris, D., Yu, R. & Bennett, C.F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 87, 46–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Koller, E. et al. Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes. Nucleic Acids Res. 39, 4795–4807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cummins, L.L. et al. Characterization of fully 2′-modified oligoribonucleotide hetero- and homoduplex hybridization and nuclease sensitivity. Nucleic Acids Res. 23, 2019–2024 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Monia, B.P., Johnston, J.F., Sasmor, H. & Cummins, L.L. Nuclease resistance and antisense activity of modified oligonucleotides targeted to Ha-ras. J. Biol. Chem. 271, 14533–14540 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Choung, S., Kim, Y.J., Kim, S., Park, H.O. & Choi, Y.C. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem. Biophys. Res. Commun. 342, 919–927 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Robbins, M. et al. 2′-O-methyl-modified RNAs act as TLR7 antagonists. Mol. Ther. 15, 1663–1669 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Manoharan, M. 2′-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim. Biophys. Acta 1489, 117–130 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Freier, S.M. & Altmann, K.-H. The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res. 25, 4429–4443 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mangos, M.M. & Damha, M.J. Flexible and frozen sugar-modified nucleic acids--modulation of biological activity through furanose ring dynamics in the antisense strand. Curr. Top. Med. Chem. 2, 1147–1171 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Prakash, T.P. An overview of sugar-modified oligonucleotides for antisense therapeutics. Chem. Biodivers. 8, 1616–1641 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Egli, M. et al. Probing the influence of stereoelectronic effects on the biophysical properties of oligonucleotides: comprehensive analysis of the RNA affinity, nuclease resistance, and crystal structure of ten 2′-O-ribonucleic acid modifications. Biochemistry 44, 9045–9057 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Martin, P. A New access to 2′-O-alkylated ribonucleosides and properties of 2′-O-alkylated oligoribonucleotides. Helv. Chim. Acta 78, 486–504 (1995).

    Article  CAS  Google Scholar 

  29. Kool, E.T. Preorganization of DNA: Design principles for improving nucleic acid recognition by synthetic oligonucleotides. Chem. Rev. 97, 1473–1488 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Owczarzy, R., You, Y., Groth, C.L. & Tataurov, A.V. Stability and mismatch discrimination of locked nucleic acid-DNA duplexes. Biochemistry 50, 9352–9367 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Koshkin, A.A. et al. LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 54, 3607–3630 (1998).

    Article  CAS  Google Scholar 

  32. Obika, S. et al. Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedr. Lett. 39, 5401–5404 (1998).

    Article  CAS  Google Scholar 

  33. Singh, S.K., Nielsen, P., Koshkin, A.A. & Wengel, J. LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem. Commun. (Camb.) 1998 455–456 (1998).

  34. Watts, J.K. Locked nucleic acid: tighter is different. Chem. Commun. (Camb.) 49, 5618–5620 (2013).

    Article  CAS  Google Scholar 

  35. Ittig, D., Liu, S., Renneberg, D., Schümperli, D. & Leumann, C.J. Nuclear antisense effects in cyclophilin A pre-mRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA. Nucleic Acids Res. 32, 346–353 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goyenvalle, A. et al. Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat. Med. 21, 270–275 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Jaschinski, F. et al. Next generation antisense oligonucleotides targeting TGF-β. Presented at the 9th annual meeting of the Oligonucleotide Therapeutics Society (Naples, Italy, October 6–8, 2013).

  38. Pedersen, L., Hagedorn, P.H., Lindholm, M.W. & Lindow, M. A kinetic model explains why shorter and less affine enzyme-recruiting oligonucleotides can be more potent. Mol. Ther. Nucleic Acids 3, e149 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Straarup, E.M. et al. Short locked nucleic acid antisense oligonucleotides potently reduce apolipoprotein B mRNA and serum cholesterol in mice and non-human primates. Nucleic Acids Res. 38, 7100–7111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seth, P.P. et al. Short antisense oligonucleotides with novel 2′-4′ conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals. J. Med. Chem. 52, 10–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Swayze, E.E. et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res. 35, 687–700 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Kamola, P.J. et al. In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization. Nucleic Acids Res. 43, 8638–8650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burel, S.A. et al. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res. 44, 2093–2109 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Kasuya, T. et al. Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Sci. Rep. 6, 30377 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Østergaard, M.E. et al. Allele-selective inhibition of mutant huntingtin with 2-thio- and C5-triazolylphenyl-deoxythymidine-modified antisense oligonucleotides. Nucleic Acid Ther. 25, 266–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Southwell, A.L. et al. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol. Ther. 22, 2093–2106 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Østergaard, M.E. et al. Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res. 41, 9634–9650 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Damha, M.J. et al. Hybrids of RNA and arabinonucleic acids (ANA and 2′F-ANA) are substrates of Ribonuclease H. J. Am. Chem. Soc. 120, 12976–12977 (1998).

    Article  CAS  Google Scholar 

  49. Watts, J.K. & Damha, M.J. 2′F-arabinonucleic acids (2′F-ANA)—history, properties, and new frontiers. Can. J. Chem. 86, 641–656 (2008).

    Article  Google Scholar 

  50. Mangos, M.M. et al. Efficient RNase H-directed cleavage of RNA promoted by antisense DNA or 2′F-ANA constructs containing acyclic nucleotide inserts. J. Am. Chem. Soc. 125, 654–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Min, K.-L., Viazovkina, E., Galarneau, A., Parniak, M.A. & Damha, M.J. Oligonucleotides comprised of alternating 2′-deoxy-2′-fluoro-β-D-arabinonucleosides and D-2′-deoxyribonucleosides (2′F-ANA/DNA 'altimers') induce efficient RNA cleavage mediated by RNase H. Bioorg. Med. Chem. Lett. 12, 2651–2654 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Mendell, J.R. et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann. Neurol. 74, 637–647 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Chiriboga, C.A. et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology 86, 890–897 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Garber, K. Big win possible for Ionis/Biogen antisense drug in muscular atrophy. Nat. Biotechnol. 34, 1002–1003 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Li, Z. & Rana, T.M. Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov. 13, 622–638 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Lennox, K.A. & Behlke, M.A. A direct comparison of anti-microRNA oligonucleotide potency. Pharm. Res. 27, 1788–1799 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Gebert, L.F. et al. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res. 42, 609–621 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Obad, S. et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet. 43, 371–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zanardi, T.A. et al. Pharmacodynamics and subchronic toxicity in mice and monkeys of ISIS 388626, a second-generation antisense oligonucleotide that targets human sodium glucose cotransporter 2. J. Pharmacol. Exp. Ther. 343, 489–496 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Subramanian, R.R. et al. Enhancing antisense efficacy with multimers and multi-targeting oligonucleotides (MTOs) using cleavable linkers. Nucleic Acids Res. 43, 9123–9132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bhagat, L. et al. Novel oligonucleotides containing two 3′-ends complementary to target mRNA show optimal gene-silencing activity. J. Med. Chem. 54, 3027–3036 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Boczkowska, M., Guga, P. & Stec, W.J. Stereodefined phosphorothioate analogues of DNA: relative thermodynamic stability of the model PS-DNA/DNA and PS-DNA/RNA complexes. Biochemistry 41, 12483–12487 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Koziolkiewicz, M., Krakowiak, A., Kwinkowski, M., Boczkowska, M. & Stec, W.J. Stereodifferentiation—the effect of P chirality of oligo(nucleoside phosphorothioates) on the activity of bacterial RNase H. Nucleic Acids Res. 23, 5000–5005 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stec, W.J. et al. Stereodependent inhibition of plasminogen activator inhibitor type 1 by phosphorothioate oligonucleotides: proof of sequence specificity in cell culture and in vivo rat experiments. Antisense Nucleic Acid Drug Dev. 7, 567–573 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Gagnon, K.T. & Watts, J.K. Meeting report: 10th annual meeting of the Oligonucleotide Therapeutics Society. Nucl. Acid Ther. 24, 428–434 (2014).

    Article  CAS  Google Scholar 

  66. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. DeVincenzo, J. et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc. Natl. Acad. Sci. USA 107, 8800–8805 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kanasty, R., Dorkin, J.R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Corey, D.R. RNA learns from antisense. Nat. Chem. Biol. 3, 8–11 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Layzer, J.M. et al. In vivo activity of nuclease-resistant siRNAs. RNA 10, 766–771 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Watts, J.K., Deleavey, G.F. & Damha, M.J. Chemically modified siRNA: tools and applications. Drug Discov. Today 13, 842–855 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Jackson, A.L. et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12, 1197–1205 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bartlett, D.W. & Davis, M.E. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnol. Bioeng. 97, 909–921 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Allerson, C.R. et al. Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48, 901–904 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Prakash, T.P. et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48, 4247–4253 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Morrissey, D.V. et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41, 1349–1356 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Deleavey, G.F. et al. Synergistic effects between analogs of DNA and RNA improve the potency of siRNA-mediated gene silencing. Nucleic Acids Res. 38, 4547–4557 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Deleavey, G.F., Watts, J.K. & Damha, M.J. Chemical modification of siRNA. Curr. Protoc. Nucleic Acid Chem. 16, 16.3 (2009).

    Google Scholar 

  80. Dar, S.A., Thakur, A., Qureshi, A. & Kumar, M. siRNAmod: A database of experimentally validated chemically modified siRNAs. Sci. Rep. 6, 20031 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Snead, N.M., Escamilla-Powers, J.R., Rossi, J.J. & McCaffrey, A.P. 5′ unlocked nucleic acid modification improves siRNA targeting. Mol. Ther. Nucleic Acids 2, e103 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  PubMed  Google Scholar 

  83. Czauderna, F. et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Manoharan, M. et al. Unique gene-silencing and structural properties of 2′-fluoro-modified siRNAs. Angew. Chem. Int. Ed. Engl. 50, 2284–2288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cuellar, T.L. et al. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB–siRNA conjugates. Nucleic Acids Res. 43, 1189–1203 (2015)<>.

    Article  CAS  PubMed  Google Scholar 

  86. Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Schirle, N.T., Sheu-Gruttadauria, J. & MacRae, I.J. Structural basis for microRNA targeting. Science 346, 608–613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Addepalli, H. et al. Modulation of thermal stability can enhance the potency of siRNA. Nucleic Acids Res. 38, 7320–7331 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rajeev, K.G. et al. RNAi agents, compositions and methods of use thereof for treating transthyretin (TTR) associated diseases. US patent 9,399,775 (2016).

  90. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Salomon, W.E., Jolly, S.M., Moore, M.J., Zamore, P.D. & Serebrov, V. Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell 162, 84–95 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schirle, N.T. et al. Structural analysis of human Argonaute-2 bound to a modified siRNA guide. J. Am. Chem. Soc. 138, 8694–8697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kel'in, A.V. et al. Structural basis of duplex thermodynamic stability and enhanced nuclease resistance of 5′-C-methyl pyrimidine-modified oligonucleotides. J. Org. Chem. 81, 2261–2279 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Martinez, J., Patkaniowska, A., Urlaub, H., Lührmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Ma, J.B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Weitzer, S. & Martinez, J. The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 447, 222–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Chen, P.Y. et al. Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 14, 263–274 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kenski, D.M. et al. siRNA-optimized modifications for enhanced in vivo activity. Mol. Ther. Nucleic Acids 1, e5 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Parmar, R. et al. 5′-(E)-vinylphosphonate: a stable phosphate mimic can improve the RNAi Activity of siRNA-GalNAc conjugates. ChemBioChem 17, 985–989 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Yu, D. et al. Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell 150, 895–908 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lima, W.F. et al. Single-stranded siRNAs activate RNAi in animals. Cell 150, 883–894 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Prakash, T.P. et al. Identification of metabolically stable 5-phospha 5(-phosphate analogs that support single-stranded siRNA activity. Nucleic Acids Res. 43, 2993–3011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Davis, M.E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 369, 819–829 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Juliano, R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res. 44, 6518–6548 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Nair, J.K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Prakash, T.P. et al. Synergistic effect of phosphorothioate, 5′-vinylphosphonate and GalNAc modifications for enhancing activity of synthetic siRNA. Bioorg. Med. Chem. Lett. 26, 2817–2820 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Mäkilä, J. et al. Synthesis of multi-galactose-conjugated 2′-O-methyl oligoribonucleotides and their in vivo imaging with positron emission tomography. Bioorg. Med. Chem. 22, 6806–6813 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Shen, W., Liang, X.H., Sun, H. & Crooke, S.T. 2′-fluoro-modified phosphorothioate oligonucleotide can cause rapid degradation of P54nrb and PSF. Nucleic Acids Res. 43, 4569–4578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Janas, M.M. et al. Impact of oligonucleotide structure, chemistry, and delivery method on in vitro cytotoxicity. Nucleic Acid Ther. http://dx.doi.org/10.1089/nat.2016/0639 (2016).

  113. Matsuda, S. et al. iRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem. Biol. 10, 1181–1187 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Rajeev, K.G. et al. Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene silencing in vivo. ChemBioChem 16, 903–908 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Sehgal, A. et al. An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nat. Med. 21, 492–497 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Prakash, T.P. et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res. 42, 8796–8807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yu, R.Z. et al. Disposition and pharmacology of a GalNAc3-conjugated ASO targeting human lipoprotein (a) in mice. Mol. Ther. Nucleic Acids 5, e317 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yu, R.Z. et al. Disposition and pharmacokinetics of a GalNAc3-conjugated antisense oligonucleotide targeting human lipoprotein (a) in monkeys. Nucleic Acid Ther. 26, 372–380 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol. 25, 1149–1157 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Byrne, M. et al. Novel hydrophobically modified asymmetric RNAi compounds (sd-rxRNA) demonstrate robust efficacy in the eye. J. Ocul. Pharmacol. Ther. 29, 855–864 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Alterman, J.F. et al. Hydrophobically modified siRNAs silence huntingtin mRNA in primary neurons and mouse brain. Mol. Ther. Nucleic Acids 4, e266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nikan, M. et al. Docosahexaenoic acid conjugation enhances distribution and safety of siRNA upon local administration in mouse brain. Mol. Ther. Nucleic Acids 5, e344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thompson, J.D. et al. Toxicological and pharmacokinetic properties of chemically modified siRNAs targeting p53 RNA following intravenous administration. Nucleic Acid Ther. 22, 255–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stein, C.A. et al. G3139, an anti-Bcl-2 antisense oligomer that binds heparin-binding growth factors and collagen I, alters in vitro endothelial cell growth and tubular morphogenesis. Clin. Cancer Res. 15, 2797–2807 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Khorkova, O. & Wahlestedt, C. Oligonucleotide therapies for disorders of the nervous system. Nat. Biotechnol. 35, 250–264 (2017).

    Article  CAS  Google Scholar 

  126. Lennox, K.A. & Behlke, M.A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res. 44, 863–877 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Gagnon, K.T. et al. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. Biochemistry 49, 10166–10178 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Stalder, L. et al. The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J. 32, 1115–1127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pei, Y. et al. Quantitative evaluation of siRNA delivery in vivo. RNA 16, 2553–2563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schwartz, J.C. et al. Antisense transcripts are targets for activating small RNAs. Nat. Struct. Mol. Biol. 15, 842–848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Modarresi, F. et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat. Biotechnol. 30, 453–459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Woo, C. et al. Poster Presented at the Harvard Epigenetics Symposium, Boston, MA, October 22, 2015.

  133. Li, L., Matsui, M. & Corey, D.R. Activating frataxin expression by repeat-targeted nucleic acids. Nat. Commun. 7, 10606 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nomakuchi, T.T., Rigo, F., Aznarez, I. & Krainer, A.R. Antisense oligonucleotide-directed inhibition of nonsense-mediated mRNA decay. Nat. Biotechnol. 34, 164–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Liang, X.H. et al. Translation efficiency of mRNAs is increased by antisense oligonucleotides targeting upstream open reading frames. Nat. Biotechnol. 34, 875–880 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Jiang, K. Biotech comes to its 'antisenses' after hard-won drug approval. Spoonful of Medicine http://blogs.nature.com/spoonful/2013/02/biotech-comes-to-its-antisenses-after-hard-won-drug-approval.html (19 February 2013).

  137. World Health Organzation. Recommended international nonproprietary names for pharmaceutical substances (INN): list 76. WHO Drug Information 30, 477–544 (2016).

  138. Khvorova, A. Oligonucleotide therapeutics—a new class of cholesterol-lowering drugs. N. Engl. J. Med. 376, 4–7 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Osborn for the oligonucleotide image in Figure 1. We would like to acknowledge the oligonucleotide research community who contributed to the evolution of this field, including those whose excellent work we could not mention for lack of space. We thank D. Conte for significant help with manuscript preparation. This work was supported by the RNA Therapeutics Institute of University of Massachusetts Medical School, the CHDI Foundation, and US National Institutes of Health grants R01GM1088030181, R01HD086111, and UH3TR000888 to A.K.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anastasia Khvorova or Jonathan K Watts.

Ethics declarations

Competing interests

A.K. owns stock in RXi Pharmaceuticals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khvorova, A., Watts, J. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 35, 238–248 (2017). https://doi.org/10.1038/nbt.3765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3765

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research