Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Patents
  • Published:

The emerging patent landscape of CRISPR–Cas gene editing technology

Early views on the control of the CRISPR–Cas disruptive enabling technology and access for follow-on commercial applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CRISPR–Cas scientific and regulatory milestones (upper strand) as well as milestones in patenting activity (lower strand).
Figure 2: The number of CRISPR–Cas9 inventions, as represented by patent families, by year of original priority filing for each patent family, together with a count of subsequent foreign filings that expand already existing patent families.
Figure 3: Top ten patent holders and the number of patent applications each filed (percentage each of the total).
Figure 4: Geographical distribution of patent family filings by date of filing of the priority application for each invention in a given jurisdiction's patent office.
Figure 5: CRISPR–Cas9 initial platform patent holders, licensors, licensees and partners.

References

  1. Moses, H. III et al. J. Am. Med. Assoc. 313, 174–189 (2015).

    Article  CAS  Google Scholar 

  2. Graff, G.D. et al. Nat. Biotechnol. 31, 404–410 (2013).

    Article  CAS  Google Scholar 

  3. Association of University Technology Managers. Nine Points to Consider in Licensing University Technology (March 6, 2007). http://www.autm.net/AUTMMain/media/Advocacy/Documents/Points_to_Consider.pdf

  4. Sheridan, C. Nat. Biotechnol. 32, 599–601 (2014).

    Article  CAS  Google Scholar 

  5. Sherkow, J.S. Nat. Biotechnol. 33, 256–257 (2015).

    Article  CAS  Google Scholar 

  6. Van Overwalle, G., van Zimmeren, E., Verbeure, B. & Matthijs, G. Nat. Rev. Genet. 7, 143–154 (2015).

    Article  Google Scholar 

  7. Weiner, C. Sci. Technol. Hum. Values 2, 50–62 (1987).

    Article  Google Scholar 

  8. Heller, M.A. & Eisenberg, R.S. Science 280, 698–701 (1998).

    Article  CAS  Google Scholar 

  9. Walsh, J., Arora, A. & Cohen, W. in Patents in the Knowledge-Based Economy (eds. Cohen, W.M. & Merrill, S.A.) 285–340 (National Research Council, National Academies of Science, Washington, 2003).

    Google Scholar 

  10. Lei, Z., Juneja, R. & Wright, B.D. Nat. Biotechnol. 27, 36–40 (2009).

    Article  CAS  Google Scholar 

  11. Cook-Deegan, R. & Heaney, C. Annu. Rev. Genomics Hum. Genet. 11, 383–425 (2010).

    Article  CAS  Google Scholar 

  12. Robinson, D. & Medlock, N. IP & Technol. Law J. 17, 12–15 (2005).

    Google Scholar 

  13. Cohen, S.N. & Boyer, H.W. Process for producing biologically functional molecular chimeras. US patent 4237224 (1980).

  14. Morrow, J.F. et al. Proc. Natl. Acad. Sci. USA 71, 1743–1747 (1974).

    Article  CAS  Google Scholar 

  15. Feldman, M.P., Colaianni, A. & Kang, L. in Intellectual Property Management in Health and Agricultural Innovation: a Handbook of Best Practices, vols. 1 and 2, (eds. Krattiger, A. et al.) 1797–1807 (2007).

    Google Scholar 

  16. Axel, R., Wigler, M.H. & Silverstein, S.J. DNA construct for producing proteinaceous materials in eucaryotic cells. US patent 6455275 (2002).

  17. Colaianni, A. & Cook-Deegan, R. Milbank Q. 87, 683–715 (2009).

    Article  Google Scholar 

  18. Elbashir, S.M. et al. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  19. Tuschl, T. et al. RNA sequence-specific mediators of RNA interference. EU patent 2028278 (2014).

  20. Chi-Ham, C.L., Clark, K.L. & Bennett, A.B. Nat. Biotechnol. 28, 32–36 (2010).

    Article  CAS  Google Scholar 

  21. Esmond, R.W. & Chung, A.K.-H. Nanotechnol. Law & Bus. 11, 15–28 (2014).

    Google Scholar 

  22. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. J. Bacteriol. 169, 5429–5433 (1987).

    Article  CAS  Google Scholar 

  23. Mojica, F.J., Díez-Villaseñor, C., Soria, E. & Juez, G. Mol. Microbiol. 36, 244–246 (2000).

    Article  CAS  Google Scholar 

  24. Jansen, R., Embden, J.D., Gaastra, W. & Schouls, L.M. Mol. Microbiol. 43, 1565–1575 (2002).

    Article  CAS  Google Scholar 

  25. Barrangou, R. et al. Science 315, 1709–1712 (2007).

    Article  CAS  Google Scholar 

  26. Deltcheva, E. et al. Nature 471, 602–607 (2011).

    Article  CAS  Google Scholar 

  27. Jinek, M. et al. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  28. Cong, L. et al. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  29. Harrison, M.M., Jenkins, B.V., O' Connor-Giles, K.M. & Wildonger, J. Genes Dev. 28, 1859–1872 (2014).

    Article  CAS  Google Scholar 

  30. Hsu, P.D., Lander, E.S. & Zhang, F. Cell 157, 1262–1278 (2014).

    Article  CAS  Google Scholar 

  31. Barrangou, R. & Doudna, J.A. Nat. Biotechnol. 34, 933–941 (2016).

    Article  CAS  Google Scholar 

  32. Doudna, J.A. et al. Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription. US patent 20140068797 (2014).

  33. Zhang, F. CRISPR–Cas systems and methods for altering expression of gene products. US patent 8697359 (2014).

  34. USPTO. CRISPR interference proceeding, Broad Institute/MIT/Harvard College vs. University of California and University of Vienna. https://acts.uspto.gov/ifiling/PDFfromDocumentum?No=106048&docTy=NOTICE+TO+DECLARE+INTERFERENCE&action=getContentByDocType (11 January 2016).

  35. Bubela, T. et al. Nat. Biotechnol. 31, 202–206 (2013).

    Article  CAS  Google Scholar 

  36. Grushkin, D. Nat. Biotechnol. 34, 13 (2016).

    Article  CAS  Google Scholar 

  37. Gasiunas, G. et al. Proc. Natl. Acad. Sci. 109, 2579–2586 (2012).

    Article  Google Scholar 

  38. Zetsche, B. et al. Cell 163, 759–771 (2015).

    Article  CAS  Google Scholar 

  39. Fore, J., Wiechers, I.R. & Cook-Deegan, R. J. Biomed. Discov. Collab. 1, 7 (2006).

    Article  Google Scholar 

  40. van Erp, P.B.G., Bloomer, G., Wilkinson, R. & Wiedenheft, B. Curr. Opin. Virol. 12, 85–90 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Tushar Khandeka and Rohit Gole (Thomson Reuters) for excellent assistance with patent data; Nancy Eik-Nes at NTNU for invaluable language support and insights; Steinar Kvam at NTNU Technology Transfer Office for his design creativity supporting our figures; Bowman Heiden at Sahlgrenska School of Innovation and Entrepreneurship, University of Gothenburg, and Mats Lundqvist at Chalmers for strategic insights on intellectual property platforms. The authors also wish to express sincere thanks to the following organizations that have contributed to this collaboration as funding and event partners: The Research Council of Norway; VINNOVA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut J Egelie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Analysis of the geographic scope of patent protection by top inventors. (PDF 101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egelie, K., Graff, G., Strand, S. et al. The emerging patent landscape of CRISPR–Cas gene editing technology. Nat Biotechnol 34, 1025–1031 (2016). https://doi.org/10.1038/nbt.3692

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3692

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing