Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase

Abstract

Blood pressure regulation is known to be maintained by a neuro-endocrine circuit, but whether immune cells contribute to blood pressure homeostasis has not been determined. We previously showed that CD4+ T lymphocytes that express choline acetyltransferase (ChAT), which catalyzes the synthesis of the vasorelaxant acetylcholine, relay neural signals1. Here we show that these CD4+CD44hiCD62Llo T helper cells by gene expression are a distinct T-cell population defined by ChAT (CD4 TChAT). Mice lacking ChAT expression in CD4+ cells have elevated arterial blood pressure, compared to littermate controls. Jurkat T cells overexpressing ChAT (JTChAT) decreased blood pressure when infused into mice. Co-incubation of JTChAT and endothelial cells increased endothelial cell levels of phosphorylated endothelial nitric oxide synthase, and of nitrates and nitrites in conditioned media, indicating increased release of the potent vasorelaxant nitric oxide. The isolation and characterization of CD4 TChAT cells will enable analysis of the role of these cells in hypotension and hypertension, and may suggest novel therapeutic strategies by targeting cell-mediated vasorelaxation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene expression analysis reveals differences between CD4+CD44hiCD62Llo ChAT-eGFP+ and ChAT-eGFP T cells. (a) RNA from the ChAT-eGFP+ and ChAT-eGFP subsets of CD4+CD44hiCD62Llo T cells was analyzed by Affymetrix Gene ST 1.
Figure 2: Increased blood pressure in mice with genetic ablation of choline acetyltransferase+ CD4+ cells.
Figure 3: Mean arterial blood pressure (MAP) after infusion of JTChAT lymphocytes in wild-type C57Bl/6 mice.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Furchgott, R.F. The pharmacology of vascular smooth muscle. Pharmacol. Rev. 7, 183–265 (1955).

    CAS  PubMed  Google Scholar 

  3. Furchgott, R.F. & Zawadzki, J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Fleming, I. & Busse, R. NO: the primary EDRF. J. Mol. Cell. Cardiol. 31, 5–14 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Mulvany, M.J. & Aalkjaer, C. Structure and function of small arteries. Physiol. Rev. 70, 921–961 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Andersson, U. & Tracey, K.J. Reflex principles of immunological homeostasis. Annu. Rev. Immunol. 30, 313–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Olofsson, P.S. et al. α7 nicotinic acetylcholine receptor (α7nAChR) expression in bone marrow-derived non-T cells is required for the inflammatory reflex. Mol. Med. 18, 539–543 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Tallini, Y.N. et al. BAC transgenic mice express enhanced green fluorescent protein in central and peripheral cholinergic neurons. Physiol. Genomics 27, 391–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  11. Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

  12. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Heng, T.S. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Mingueneau, M. et al. The transcriptional landscape of αβ T cell differentiation. Nat. Immunol. 14, 619–632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dimmeler, S. et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, P.L. et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377, 239–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Laurat, E. et al. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 104, 197–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Robertson, A.K. et al. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J. Clin. Invest. 112, 1342–1350 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guzik, T.J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison, D.G. et al. Inflammation, immunity, and hypertension. Hypertension 57, 132–140 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Matrougui, K. et al. Natural regulatory T cells control coronary arteriolar endothelial dysfunction in hypertensive mice. Am. J. Pathol. 178, 434–441 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marvar, P.J. & Harrison, D.G. Stress-dependent hypertension and the role of T lymphocytes. Exp. Physiol. 97, 1161–1167 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Olofsson, P.S., Rosas-Ballina, M., Levine, Y.A. & Tracey, K.J. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol. Rev. 248, 188–204 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kawashima, K., Fujii, T., Moriwaki, Y., Misawa, H. & Horiguchi, K. Reconciling neuronally and nonneuronally derived acetylcholine in the regulation of immune function. Ann. N Y Acad. Sci. 1261, 7–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Bearden, S.E., Payne, G.W., Chisty, A. & Segal, S.S. Arteriolar network architecture and vasomotor function with ageing in mouse gluteus maximus muscle. J. Physiol. (Lond.) 561, 535–545 (2004).

    Article  CAS  Google Scholar 

  26. Fujimoto, K., Matsui, M., Fujii, T. & Kawashima, K. Decreased acetylcholine content and choline acetyltransferase mRNA expression in circulating mononuclear leukocytes and lymphoid organs of the spontaneously hypertensive rat. Life Sci. 69, 1629–1638 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Tracey, K.J. Shock medicine. Sci. Am. 312, 28–35 (2015).

    Article  Google Scholar 

  28. Olofsson, P.S. A stimulating concept: bioelectronic medicine in inflammatory disease. Bioelectron. Med. 1, 30–33 (2015).

    Article  Google Scholar 

  29. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Krump-Konvalinkova, V. et al. Generation of human pulmonary microvascular endothelial cell lines. Lab. Invest. 81, 1717–1727 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Ye, X., Ding, J., Zhou, X., Chen, G. & Liu, S.F. Divergent roles of endothelial NF-kappaB in multiple organ injury and bacterial clearance in mouse models of sepsis. J. Exp. Med. 205, 1303–1315 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahmed, M.N. et al. Extracellular superoxide dismutase overexpression can reverse the course of hypoxia-induced pulmonary hypertension. Mol. Med. 18, 38–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Dong, Q.G. et al. A general strategy for isolation of endothelial cells from murine tissues. Characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants. Arterioscler. Thromb. Vasc. Biol. 17, 1599–1604 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Carvalho, B.S. & Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luo, J. et al. A comparison of batch effect removal methods for enhancement of prediction performance using MAQC-II microarray gene expression data. Pharmacogenomics J. 10, 278–291 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smyth, G.K. in Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds. Gentleman, R., Carey, V., Dudoit, S., Irizarry, R. & Huber, W.) 397–420 (Springer, New York, 2005).

  38. Eden, E., Lipson, D., Yogev, S. & Yakhini, Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput. Biol. 3, e39 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the flow cytometry facility at the Feinstein Institute, the laboratory of C. Benoist at Harvard Medical School for assistance, and G.K. Hansson for comments. We thank C. James Kirkpatrick (Institute of Pathology, Johannes-Gutenberg University, Mainz, Germany), who kindly provided PMEC-ST1.6R cells. This work benefitted from the data assembled by the ImmGen consortium. This work was supported by the following grants: NIH, NIGMS RO1 GM57226 to K.J.T., NIGMS RO1 GM098446 to H.Y. and NIGMS RO1GM089807 to K.J.T. and V.A.P., VR 2013-3003 to A.A., NIAID R01 029690 to T.L.R., Canadian Institutes for Health Research FRN 119339 to P.H.B., and Knut and Alice Wallenberg's Foundation 2014.0212, The Swedish Heart-Lung Foundation 20150767 and Svenska Läkaresällskapet to P.S.O. Jurkat cells (originally obtained from ATCC) were a gift from C. Chu, The Feinstein Institute for Medical Research. eNOS-deficient mice were provided by J. Lundberg and E. Weitzberg, Karolinska Institutet, Stockholm, Sweden.

Author information

Authors and Affiliations

Authors

Contributions

P.S.O. and K.J.T. conceived the study, planned and performed experiments, analyzed data and wrote the manuscript. U.A., B.D. and T.W.M. planned experiments and edited the manuscript. B.E.S., W.M.H. and M.A.C. planned and performed experiments and analyzed data. M.O. and P.K.G. planned experiments, analyzed gene expression and edited the manuscript. R.S. and P.H.B. planned experiments, measured murine blood pressure, performed telemetry and echocardiography, and analyzed data. M.N.A. and E.J.M. planned, performed and analyzed experiments with endothelial cells in vitro and murine blood pressure in response to cell infusion. F.S. and A.A. planned, performed and analyzed experiments on murine blood pressure in response to cell infusion. A.I., V.A.P., K.B., H.Y., S.S.C., S.F.L., C.L., T.L.R. and N.E.H. performed experiments and analyzed data.

Corresponding author

Correspondence to Peder S Olofsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18 and Supplementary Tables 1 and 5 (PDF 1855 kb)

Supplementary Table 2

Included samples (XLSX 21 kb)

Supplementary Table 3

ChAT expr values (XLS 38 kb)

Supplementary Table 4

Subsets from the Immgen dataset included in the principal component analysis of splenic immune cell subsets (XLS 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olofsson, P., Steinberg, B., Sobbi, R. et al. Blood pressure regulation by CD4+ lymphocytes expressing choline acetyltransferase. Nat Biotechnol 34, 1066–1071 (2016). https://doi.org/10.1038/nbt.3663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3663

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing