Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of CRISPR technologies in research and beyond

Abstract

Programmable DNA cleavage using CRISPR–Cas9 enables efficient, site-specific genome engineering in single cells and whole organisms. In the research arena, versatile CRISPR-enabled genome editing has been used in various ways, such as controlling transcription, modifying epigenomes, conducting genome-wide screens and imaging chromosomes. CRISPR systems are already being used to alleviate genetic disorders in animals and are likely to be employed soon in the clinic to treat human diseases of the eye and blood. Two clinical trials using CRISPR-Cas9 for targeted cancer therapies have been approved in China and the United States. Beyond biomedical applications, these tools are now being used to expedite crop and livestock breeding, engineer new antimicrobials and control disease-carrying insects with gene drives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of action of CRISPR–Cas immune systems.
Figure 2: Butterfly wing patterns altered using CRISPR–Cas9-mediated genome editing.
Figure 3: Genome-editing in the literature.
Figure 4: Cas9 diversity.
Figure 5: Genome editing redefined.

Similar content being viewed by others

References

  1. Pennisi, E. The CRISPR craze. Science 341, 833–836 (2013).

    CAS  PubMed  Google Scholar 

  2. Ledford, H. CRISPR, the disruptor. Nature 522, 20–24 (2015).

    CAS  PubMed  Google Scholar 

  3. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

    CAS  PubMed  Google Scholar 

  4. Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190, 1401–1412 (2008).

    CAS  PubMed  Google Scholar 

  5. Mojica, F.J., Díez-Villaseñor, C., García-Martínez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009).

    CAS  PubMed  Google Scholar 

  6. Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sternberg, S.H., Haurwitz, R.E. & Doudna, J.A. Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. RNA 18, 661–672 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Anderson, E.M. et al. Systematic analysis of CRISPR–Cas9 mismatch tolerance reveals low levels of off-target activity. J. Biotechnol. 211, 56–65 (2015).

    CAS  PubMed  Google Scholar 

  9. Szczelkun, M.D. et al. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc. Natl. Acad. Sci. USA 111, 9798–9803 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Garneau, J.E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    CAS  PubMed  Google Scholar 

  11. Knight, S.C. et al. Dynamics of CRISPR–Cas9 genome interrogation in living cells. Science 350, 823–826 (2015).

    CAS  PubMed  Google Scholar 

  12. Sternberg, S.H., LaFrance, B., Kaplan, M. & Doudna, J.A. Conformational control of DNA target cleavage by CRISPR–Cas9. Nature 527, 110–113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gaj, T., Gersbach, C.A. & Barbas, C.F. III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lambowitz, A.M. & Zimmerly, S. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb. Perspect. Biol. 3, a003616 (2011).

    PubMed  PubMed Central  Google Scholar 

  15. Doudna, J.A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR–Cas9. Science 346, 1258096 (2014).

    PubMed  Google Scholar 

  16. Barrangou, R. RNA events. Cas9 targeting and the CRISPR revolution. Science 344, 707–708 (2014).

    CAS  PubMed  Google Scholar 

  17. Lenhart, J.S., Schroeder, J.W., Walsh, B.W. & Simmons, L.A. DNA repair and genome maintenance in Bacillus subtilis. Microbiol. Mol. Biol. Rev. 76, 530–564 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Decottignies, A. Alternative end-joining mechanisms: a historical perspective. Front. Genet. 4, 48 (2013).

    PubMed  PubMed Central  Google Scholar 

  19. Bennardo, N., Cheng, A., Huang, N. & Stark, J.M. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 4, e1000110 (2008).

    PubMed  PubMed Central  Google Scholar 

  20. Sakuma, T., Nakade, S., Sakane, Y., Suzuki, K.T. & Yamamoto, T. MMEJ-assisted gene knock-in using TALENs and CRISPR–Cas9 with the PITCh systems. Nat. Protoc. 11, 118–133 (2016).

    CAS  PubMed  Google Scholar 

  21. Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR–Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sander, J.D. & Joung, J.K. CRISPR–Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wyvekens, N., Topkar, V.V., Khayter, C., Joung, J.K. & Tsai, S.Q. Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Hum. Gene Ther. 26, 425–431 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsai, S.Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569–576 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M. & Joung, J.K. Improving CRISPR–Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Trevino, A.E. & Zhang, F. Genome editing using Cas9 nickases. Methods Enzymol. 546, 161–174 (2014).

    CAS  PubMed  Google Scholar 

  28. Ran, F.A. et al. Genome engineering using the CRISPR–Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR–Cas systems. Mol. Cell 60, 385–397 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gilbert, L.A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gilbert, L.A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Larson, M.H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma, H. et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34, 528–530 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hilton, I.B. et al. Epigenome editing by a CRISPR–Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kearns, N.A. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401–403 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hilton, I.B. & Gersbach, C.A. Enabling functional genomics with genome engineering. Genome Res. 25, 1442–1455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Briner, A.E. et al. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol. Cell 56, 333–339 (2014).

    CAS  PubMed  Google Scholar 

  41. Esvelt, K.M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fonfara, I. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR–Cas systems. Nucleic Acids Res. 42, 2577–2590 (2014).

    CAS  PubMed  Google Scholar 

  43. Dahlman, J.E. et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat. Biotechnol. 33, 1159–1161 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR–Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rahdar, M. et al. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells. Proc. Natl. Acad. Sci. USA 112, E7110–E7117 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Müller, M. et al. Streptococcus thermophilus CRISPR–Cas9 systems enable specific editing of the human genome. Mol. Ther. 24, 636–644 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935–949 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Anders, C., Niewoehner, O. & Jinek, M. In vitro reconstitution and crystallization of Cas9 endonuclease bound to a guide RNA and a DNA target. Methods Enzymol. 558, 515–537 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Anders, C. & Jinek, M. In vitro enzymology of Cas9. Methods Enzymol. 546, 1–20 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Kleinstiver, B.P. et al. Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Jiang, F. & Doudna, J.A. The structural biology of CRISPR–Cas systems. Curr. Opin. Struct. Biol. 30, 100–111 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang, F., Zhou, K., Ma, L., Gressel, S. & Doudna, J.A. STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348, 1477–1481 (2015).

    CAS  PubMed  Google Scholar 

  54. Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dong, D. et al. The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532, 522–526 (2016).

    CAS  PubMed  Google Scholar 

  56. Slaymaker, I.M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    CAS  PubMed  Google Scholar 

  57. Kleinstiver, B.P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Leenay, R.T. et al. Identifying and visualizing functional PAM diversity across CRISPR–Cas systems. Mol. Cell 62, 137–147 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wright, A.V. et al. Rational design of a split-Cas9 enzyme complex. Proc. Natl. Acad. Sci. USA 112, 2984–2989 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zetsche, B., Volz, S.E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    CAS  PubMed  Google Scholar 

  61. Richardson, C.D., Ray, G.J., DeWitt, M.A., Curie, G.L. & Corn, J.E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR–Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

    CAS  PubMed  Google Scholar 

  62. Bolukbasi, M.F. et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 12, 1150–1156 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR–Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    CAS  PubMed  Google Scholar 

  64. Nihongaki, Y., Yamamoto, S., Kawano, F., Suzuki, H. & Sato, M. CRISPR–Cas9-based photoactivatable transcription system. Chem. Biol. 22, 169–174 (2015).

    CAS  PubMed  Google Scholar 

  65. Dow, L.E. et al. Inducible in vivo genome editing with CRISPR–Cas9. Nat. Biotechnol. 33, 390–394 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPR–Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chu, V.T. et al. Increasing the efficiency of homology-directed repair for CRISPR–Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548 (2015).

    CAS  PubMed  Google Scholar 

  68. Shalem, O., Sanjana, N.E. & Zhang, F. High-throughput functional genomics using CRISPR–Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu, C. et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell 16, 142–147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Barrangou, R. et al. Advances in CRISPR–Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res. 43, 3407–3419 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kampmann, M. et al. Next-generation libraries for robust RNA interference-based genome-wide screens. Proc. Natl. Acad. Sci. USA 112, E3384–E3391 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Gilles, A.F. & Averof, M. Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. Evodevo 5, 43 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Kampmann, M., Bassik, M.C. & Weissman, J.S. Functional genomics platform for pooled screening and generation of mammalian genetic interaction maps. Nat. Protoc. 9, 1825–1847 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Malina, A. et al. Adapting CRISPR/Cas9 for functional genomics screens. Methods Enzymol. 546, 193–213 (2014).

    CAS  PubMed  Google Scholar 

  77. Wang, T., Wei, J.J., Sabatini, D.M. & Lander, E.S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    CAS  PubMed  Google Scholar 

  78. Koike-Yusa, H., Li, Y., Tan, E.P., Velasco-Herrera, Mdel C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014).

    CAS  PubMed  Google Scholar 

  79. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    CAS  PubMed  Google Scholar 

  80. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Evers, B. et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34, 631–633 (2016).

    CAS  PubMed  Google Scholar 

  82. Housden, B.E. et al. Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci. Signal. 8, rs9 (2015).

    PubMed  PubMed Central  Google Scholar 

  83. Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015).

    CAS  PubMed  Google Scholar 

  85. Valletta, S. et al. ASXL1 mutation correction by CRISPR/Cas9 restores gene function in leukemia cells and increases survival in mouse xenografts. Oncotarget 6, 44061–44071 (2015).

    PubMed  PubMed Central  Google Scholar 

  86. Weber, J. et al. CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc. Natl. Acad. Sci. USA 112, 13982–13987 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Korkmaz, G. et al. Functional genetic screens for enhancer elements in the human genome using CRISPR–Cas9. Nat. Biotechnol. 34, 192–198 (2016).

    CAS  PubMed  Google Scholar 

  88. Rajagopal, N. et al. High-throughput mapping of regulatory DNA. Nat. Biotechnol. 34, 167–174 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Klymiuk, N. et al. Tailored pig models for preclinical efficacy and safety testing of targeted therapies. Toxicol. Pathol. 44, 346–357 (2016).

    CAS  PubMed  Google Scholar 

  90. Yang, L. et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101–1104 (2015).

    CAS  PubMed  Google Scholar 

  91. Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).

    CAS  PubMed  Google Scholar 

  92. Barrangou, R. & May, A.P. Unraveling the potential of CRISPR–Cas9 for gene therapy. Expert Opin. Biol. Ther. 15, 311–314 (2015).

    CAS  PubMed  Google Scholar 

  93. Firth, A.L. et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep. 12, 1385–1390 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu, Y. et al. Correction of a genetic disease in mouse via use of CRISPR–Cas9. Cell Stem Cell 13, 659–662 (2013).

    CAS  PubMed  Google Scholar 

  95. Long, C. et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science 345, 1184–1188 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Osborn, M.J. et al. Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum. Gene Ther. 26, 114–126 (2015).

    CAS  PubMed  Google Scholar 

  97. Nelson, C.E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407 (2016).

    CAS  PubMed  Google Scholar 

  98. Long, C. et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351, 400–403 (2016).

    CAS  PubMed  Google Scholar 

  99. Tabebordbar, M. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351, 407–411 (2016).

    CAS  PubMed  Google Scholar 

  100. Yin, H. et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551–553 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ding, Q. et al. Permanent alteration of PCSK9 with in vivo CRISPR–Cas9 genome editing. Circ. Res. 115, 488–492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bakondi, B. et al. In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis Pigmentosa. Mol. Ther. 24, 556–563 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Freedman, B.S. et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat. Commun. 6, 8715 (2015).

    CAS  PubMed  Google Scholar 

  104. Wang, P. et al. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment. Mol. Autism 6, 55 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Heidenreich, M. & Zhang, F. Applications of CRISPR–Cas systems in neuroscience. Nat. Rev. Neurosci. 17, 36–44 (2016).

    CAS  PubMed  Google Scholar 

  106. Swiech, L. et al. In vivo interrogation of gene function in the mammalian brain using CRISPR–Cas9. Nat. Biotechnol. 33, 102–106 (2015).

    CAS  PubMed  Google Scholar 

  107. Yao, S., He, Z. & Chen, C. CRISPR/Cas9-mediated genome editing of epigenetic factors for cancer therapy. Hum. Gene Ther. 26, 463–471 (2015).

    CAS  PubMed  Google Scholar 

  108. Xue, W. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, D. et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 26, 432–442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Howes, R. & Schofield, C. Genome engineering using adeno-associated virus (AAV). Methods Mol. Biol. 1239, 75–103 (2015).

    CAS  PubMed  Google Scholar 

  111. Lin, S., Staahl, B.T., Alla, R.K. & Doudna, J.A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl. Acad. Sci. USA 112, 10437–10442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zuris, J.A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    CAS  PubMed  Google Scholar 

  114. Hendriks, W.T., Jiang, X., Daheron, L. & Cowan, C.A. TALEN- and CRISPR/Cas9-mediated gene editing in human pluripotent stem cells using lipid-based transfection. Curr Protoc Stem Cell Biol 34, 5B 3.1–5B 3.25 (2015).

    Google Scholar 

  115. Paix, A., Folkmann, A., Rasoloson, D. & Seydoux, G. High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR–Cas9 ribonucleoprotein complexes. Genetics 201, 47–54 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Woo, J.W. et al. DNA-free genome editing in plants with preassembled CRISPR–Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).

    CAS  PubMed  Google Scholar 

  117. Kim, S., Kim, D., Cho, S.W., Kim, J. & Kim, J.S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun, W. et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR–Cas9 for genome editing. Angew. Chem. Int. Edn Engl. 54, 12029–12033 (2015).

    CAS  Google Scholar 

  119. Beisel, C.L., Gomaa, A.A. & Barrangou, R. A CRISPR design for next-generation antimicrobials. Genome Biol. 15, 516 (2014).

    PubMed  PubMed Central  Google Scholar 

  120. Gomaa, A.A. et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR–Cas systems. MBio 5, e00928–e13 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Bikard, D. et al. Exploiting CRISPR–Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Citorik, R.J., Mimee, M. & Lu, T.K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sinkunas, T. et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J. 30, 1335–1342 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Sinkunas, T. et al. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 32, 385–394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hu, W. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl. Acad. Sci. USA 111, 11461–11466 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Li, C. et al. Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9. J. Gen. Virol. 96, 2381–2393 (2015).

    CAS  PubMed  Google Scholar 

  127. Wang, W. et al. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 9, e115987 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Ye, L. et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Δ32 mutation confers resistance to HIV infection. Proc. Natl. Acad. Sci. USA 111, 9591–9596 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, S. & Sodroski, J. Efficient human immunodeficiency virus (HIV-1) infection of cells lacking PDZD8. Virology 481, 73–78 (2015).

    CAS  PubMed  Google Scholar 

  130. Liao, H.K. et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat. Commun. 6, 6413 (2015).

    CAS  PubMed  Google Scholar 

  131. Hou, P. et al. Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection. Sci. Rep. 5, 15577 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, J. & Quake, S.R. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection. Proc. Natl. Acad. Sci. USA 111, 13157–13162 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Hu, Z. et al. Disruption of HPV16–E7 by CRISPR/Cas system induces apoptosis and growth inhibition in HPV16 positive human cervical cancer cells. BioMed Res. Int. 2014, 612823 (2014).

    PubMed  PubMed Central  Google Scholar 

  134. Kennedy, E.M. et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J. Virol. 88, 11965–11972 (2014).

    PubMed  PubMed Central  Google Scholar 

  135. Yu, L. et al. Disruption of human papillomavirus 16 E6 gene by clustered regularly interspaced short palindromic repeat/Cas system in human cervical cancer cells. Onco Targets Ther. 8, 37–44 (2014).

    PubMed  PubMed Central  Google Scholar 

  136. Dong, C. et al. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res. 118, 110–117 (2015).

    CAS  PubMed  Google Scholar 

  137. Kennedy, E.M. et al. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISPR/Cas RNA-guided DNA endonuclease. Virology 476, 196–205 (2015).

    CAS  PubMed  Google Scholar 

  138. Kennedy, E.M. & Cullen, B.R. Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment. Virology 479–480, 213–220 (2015).

    PubMed  Google Scholar 

  139. Liu, X., Hao, R., Chen, S., Guo, D. & Chen, Y. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J. Gen. Virol. 96, 2252–2261 (2015).

    CAS  PubMed  Google Scholar 

  140. Ramanan, V. et al. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci. Rep. 5, 10833 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, J. et al. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World J. Gastroenterol. 21, 9554–9565 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Lin, S.R. et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol. Ther. Nucleic Acids 3, e186 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhen, S. et al. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther. 22, 404–412 (2015).

    CAS  PubMed  Google Scholar 

  144. Whitworth, K.M. et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat. Biotechnol. 34, 20–22 (2016).

    CAS  PubMed  Google Scholar 

  145. Carlson, D.F. et al. Production of hornless dairy cattle from genome-edited cell lines. Nat. Biotechnol. 34, 479–481 (2016).

    CAS  PubMed  Google Scholar 

  146. Peng, J. et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci. Rep. 5, 16705 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N.J. & Nekrasov, V. Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 32, 76–84 (2015).

    CAS  PubMed  Google Scholar 

  148. Ricroch, A.E. & Hénard-Damave, M.C. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges. Crit. Rev. Biotechnol. 36, 675–690 (2016).

    CAS  PubMed  Google Scholar 

  149. Svitashev, S. et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169, 931–945 (2015).

    PubMed  PubMed Central  Google Scholar 

  150. Li, Z. et al. Cas9-guide RNA directed genome editing in soybean. Plant Physiol. 169, 960–970 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Ali, Z. et al. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant 8, 1288–1291 (2015).

    CAS  PubMed  Google Scholar 

  152. Waltz, E. Gene-edited CRISPR mushroom escapes US regulation. Nature 532, 293 (2016).

    CAS  PubMed  Google Scholar 

  153. Selle, K. & Barrangou, R. CRISPR-based technologies and the future of food science. J. Food Sci. 80, R2367–R2372 (2015).

    CAS  PubMed  Google Scholar 

  154. Selle, K. & Barrangou, R. Harnessing CRISPR–Cas systems for bacterial genome editing. Trends Microbiol. 23, 225–232 (2015).

    CAS  PubMed  Google Scholar 

  155. Barrangou, R. et al. Genomic impact of CRISPR immunization against bacteriophages. Biochem. Soc. Trans. 41, 1383–1391 (2013).

    CAS  PubMed  Google Scholar 

  156. Barrangou, R. & Horvath, P. CRISPR: new horizons in phage resistance and strain identification. Annu. Rev. Food Sci. Technol. 3, 143–162 (2012).

    CAS  PubMed  Google Scholar 

  157. Oh, J.H. & van Pijkeren, J.P. CRISPR–Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 42, e131 (2014).

    PubMed  PubMed Central  Google Scholar 

  158. van Pijkeren, J.P. & Britton, R.A. Precision genome engineering in lactic acid bacteria. Microb. Cell Fact. 13 (Suppl. 1), S10 (2014).

    PubMed  PubMed Central  Google Scholar 

  159. Barrangou, R. & van Pijkeren, J.P. Exploiting CRISPR–Cas immune systems for genome editing in bacteria. Curr. Opin. Biotechnol. 37, 61–68 (2016).

    CAS  PubMed  Google Scholar 

  160. Ryan, O.W. et al. Selection of chromosomal DNA libraries using a multiplex CRISPR system. eLife 3, e03703 (2014).

    PubMed Central  Google Scholar 

  161. Selle, K., Klaenhammer, T.R. & Barrangou, R. CRISPR-based screening of genomic island excision events in bacteria. Proc. Natl. Acad. Sci. USA 112, 8076–8081 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Shipman, S.L., Nivala, J., Macklis, J.D. & Church, G.M. Molecular recordings by directed CRISPR spacer acquisition. Science 353, aaf1175 (2016).

    PubMed  PubMed Central  Google Scholar 

  163. Esvelt, K.M., Smidler, A.L., Catteruccia, F. & Church, G.M. Concerning RNA-guided gene drives for the alteration of wild populations. eLife 3, e03401 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. Gantz, V.M. et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl. Acad. Sci. USA 112, E6736–E6743 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. DiCarlo, J.E., Chavez, A., Dietz, S.L., Esvelt, K.M. & Church, G.M. Safeguarding CRISPR–Cas9 gene drives in yeast. Nat. Biotechnol. 33, 1250–1255 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Hammond, A. et al. A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 78–83 (2016).

    CAS  PubMed  Google Scholar 

  167. Shi, J. et al. Discovery of cancer drug targets by CRISPR–Cas9 screening of protein domains. Nat. Biotechnol. 33, 661–667 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Li, P. et al. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 22, 20–31 (2015).

    CAS  PubMed  Google Scholar 

  169. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013).

    CAS  PubMed  Google Scholar 

  170. Ousterout, D.G. et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun. 6, 6244 (2015).

    CAS  PubMed  Google Scholar 

  171. Chen, Y. et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum. Mol. Genet. 24, 3764–3774 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Song, B. et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 24, 1053–1065 (2015).

    CAS  PubMed  Google Scholar 

  173. Xie, F. et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 24, 1526–1533 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Xu, P. et al. Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C>T) mutation in β-thalassemia-derived iPSCs. Sci. Rep. 5, 12065 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Yang, Y. et al. Naïve induced pluripotent stem cells generated from β-thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9. Stem Cells Transl. Med. 5, 8–19 (2016).

    CAS  PubMed  Google Scholar 

  176. Bosley, K.S. et al. CRISPR germline engineering–the community speaks. Nat. Biotechnol. 33, 478–486 (2015).

    CAS  PubMed  Google Scholar 

  177. Baltimore, D. et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 348, 36–38 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Makarova, K.S. & Koonin, E.V. Annotation and classification of CRISPR–Cas systems. Methods Mol. Biol. 1311, 47–75 (2015).

    PubMed  PubMed Central  Google Scholar 

  179. Li, X. et al. Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies. Nat. Commun. 6, 8212 (2015).

    PubMed  Google Scholar 

  180. Nishimasu, H. et al. Crystal structure of Staphylococcus aureus Cas9. Cell 162, 1113–1126 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Ran, F.A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Liang, P. et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6, 363–372 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Kamao, H. et al. Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports 2, 205–218 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Hotta, A. & Yamanaka, S. From genomics to gene therapy: induced pluripotent stem cells meet genome editing. Annu. Rev. Genet. 49, 47–70 (2015).

    CAS  PubMed  Google Scholar 

  185. Doudna, J.A. Genomic engineering and the future of medicine. J. Am. Med. Assoc. 313, 791–792 (2015).

    CAS  Google Scholar 

  186. van der Oost, J., Jore, M.M., Westra, E.R., Lundgren, M. & Brouns, S.J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34, 401–407 (2009).

    CAS  PubMed  Google Scholar 

  187. Marraffini, L.A. CRISPR–Cas immunity in prokaryotes. Nature 526, 55–61 (2015).

    CAS  PubMed  Google Scholar 

  188. Sontheimer, E.J. & Barrangou, R. The bacterial origins of the CRISPR genome-editing revolution. Hum. Gene Ther. 26, 413–424 (2015).

    CAS  PubMed  Google Scholar 

  189. Barrangou, R. & Marraffini, L.A. CRISPR–Cas systems: prokaryotes upgrade to adaptive immunity. Mol. Cell 54, 234–244 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    CAS  PubMed  Google Scholar 

  191. Brouns, S.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Marraffini, L.A. & Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Hale, C.R. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945–956 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579–E2586 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Barrangou, R. RNA-mediated programmable DNA cleavage. Nat. Biotechnol. 30, 836–838 (2012).

    CAS  PubMed  Google Scholar 

  198. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    CAS  PubMed  Google Scholar 

  202. Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR–Cas system. Nat. Biotechnol. 31, 227–229 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    PubMed  PubMed Central  Google Scholar 

  204. Sternberg, S.H. & Doudna, J.A. Expanding the biologist's toolkit with CRISPR–Cas9. Mol. Cell 58, 568–574 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge their laboratory members, collaborators and colleagues throughout the CRISPR community for fruitful discussions and insightful opinions. We also thank A. Briner for assistance with figures and graphic design, and M. Perry and C. Desplan for providing the picture of butterflies. Data regarding CRISPR deposits and distributions through Addgene were provided courtesy of N. Waxmonsky and J. Welch at Addgene, Inc. (http://www.addgene.org/).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rodolphe Barrangou or Jennifer A Doudna.

Ethics declarations

Competing interests

R.B. and J.A.D. are inventors on several patents related to various uses of CRISPR–Cas systems. R.B. is a board member of Caribou Biosciences, a founder and advisor of Intellia Therapeutics, a founder and advisor of Locus Biosciences; J.A.D. is a co-founder and advisor of Caribou Biosciences and Intellia Therapeutics, and a co-founder of Editas Medicine; these companies are involved in commercialization of CRISPR applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrangou, R., Doudna, J. Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34, 933–941 (2016). https://doi.org/10.1038/nbt.3659

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3659

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research