Abstract

Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase.

  • Subscribe to Nature Biotechnology for full access:

    $250

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Change history

  • Corrected online 14 September 2016

    In the version of this article initially published, the volume and page numbers for reference 46 were incorrect. The error has been corrected in the HTML and PDF versions of the article.

Accessions

Primary accessions

European Nucleotide Archive

References

  1. 1.

    et al. Biol. Conserv. 167, 265–275 (2013).

  2. 2.

    & Genet. Coop. 18, 36–37 (1968).

  3. 3.

    et al. Science 296, 343–346 (2002).

  4. 4.

    et al. Physiol. Plant. 123, 331–338 (2005).

  5. 5.

    , , , & Annu. Rev. Plant Biol. 64, 219–241 (2013).

  6. 6.

    & J. Exp. Bot. 65, 4639–4651 (2014).

  7. 7.

    The Tomato Genome Consortium. Nature 485, 635–641 (2012).

  8. 8.

    et al. Nature 334, 724–726 (1988).

  9. 9.

    , & Proc. Natl. Acad. Sci. USA 85, 8805–8809 (1988).

  10. 10.

    et al. Plant Mol. Biol. 14, 369–379 (1990).

  11. 11.

    , , & Plant Cell 4, 667–679 (1992).

  12. 12.

    & Plant Physiol. 106, 429–436 (1994).

  13. 13.

    et al. Plant J. 3, 121–129 (1993).

  14. 14.

    , & Plant Physiol. 129, 1755–1762 (2002).

  15. 15.

    et al. Plant Cell 11, 2203–2216 (1999).

  16. 16.

    et al. Plant Physiol. 128, 751–759 (2002).

  17. 17.

    & Phytochemistry 11, 2201–2205 (1972).

  18. 18.

    , , & Development 130, 635–643 (2003).

  19. 19.

    & Plant Physiol. 163, 5–20 (2013).

  20. 20.

    et al. Development 141, 4841–4850 (2014).

  21. 21.

    et al. J. Biol. Chem. 276, 19404–19413 (2001).

  22. 22.

    , & Plant Cell Environ. 26, 977–989 (2003).

  23. 23.

    & Euphytica 79, 175–179 (1994).

  24. 24.

    et al. J. Fd. Sci. 75, S531–S541 (2010).

  25. 25.

    et al. Isolation of Plant Growth Substances 4 (Cambridge University Press, 1978).

  26. 26.

    et al. Plant Physiol. 159, 1644–1657 (2012).

  27. 27.

    , , , & Plant Mol. Biol. 51, 851–857 (2003).

  28. 28.

    , & Methods Enzymol. 161, 329–335 (1988).

  29. 29.

    FastQC: (2010).

  30. 30.

    , & Bioinformatics 25, 1105–1111 (2009).

  31. 31.

    & Nat. Methods 9, 357–359 (2012).

  32. 32.

    , , & BMC Bioinformatics 12, 480 (2011).

  33. 33.

    , & Bioinformatics 26, 139–140 (2010).

  34. 34.

    , , & Genome Biol. 11, R14 (2010).

  35. 35.

    et al. J. Exp. Bot. 56, 219–243 (2005).

  36. 36.

    , , & Plant J. 24, 551–558 (2000).

  37. 37.

    et al. Sci. Rep. 4, 3859 (2014).

  38. 38.

    et al. Nat. Genet. 46, 1034–1038 (2014).

  39. 39.

    , & J. Agric. Food Chem. 35, 540–544 (1987).

  40. 40.

    & Anal. Biochem. 54, 484–489 (1973).

  41. 41.

    & Methods Enzymol. 384, 185–212 (2004).

  42. 42.

    et al. Analyst (Lond.) 139, 79–92 (2014).

  43. 43.

    , , & Protoplasma 230, 99–115 (2007).

  44. 44.

    & Methods 25, 402–408 (2001).

  45. 45.

    , , , & Nat. Biotechnol. 31, 691–693 (2013).

  46. 46.

    et al. Plant Mol. Biol. 11, 651–662 (1988).

  47. 47.

    et al. Plant Physiol. 126, 210–221 (2001).

Download references

Acknowledgements

S.U. was funded by Ministry of Education of the Turkish Republic. The work was partly funded by BBSRC and Syngenta Seeds Ltd. through BBSRC 'stand-alone LINK' grants to P.D.F. and G.B.S. (BB/J015598/1 and BB/J016071/1). As part of the BBSRC grant, Syngenta staff (J.S., S.S., C.B. and D.R.) provided support with generating the transgenic plants, the bioinformatics analysis, the microscopy and writing the paper. G.B.S. and P.D.F. acknowledge support from EU project FP6 EUSOL and the European Cooperation in Science and Technology (COST) Action FA1106. D.D. was funded by US National Science Foundation grants NSF-MRI 1337280 and NSF-MRI 0922805. B.B.-U. and A.L.T.P. were funded by US National Science Foundation grants IOS 0957264 and IOS 0544504. J.R. was funded by a grant (IOS-1339287) from the Plant Genome Research Program of the US National Science Foundation. We acknowledge Syngenta Crop Protection, Research Triangle Park, North Carolina, USA, M. Franco for cDNA library preparation and J. Ni for RNASeq quality checks, read alignment and gene counting. We acknowledge J. Jones, V. Nekrasov and S. Kamoun, T.S.L. and The Gatsby Charitable Foundation for provision of the CRISPR–Cas 9 vectors. We also thank M. Bennett and J. Labavitch for useful discussions. COS488 was kindly provided by J. Mravec and W.G.T. Willats of the Department of Plant and Environmental Sciences of the University of Copenhagen.

Author information

Author notes

    • Rebecca Smith
    • , Tabot M D Besong
    •  & Suzy Stiegelmeyer

    Present addresses: Valley Produce, Springalls Farm, Reading, UK (R.S.); Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia (T.M.D.B.); Q2 Solutions, EA Genomics, Morrisville, North Carolina, USA (S.S.).

Affiliations

  1. School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.

    • Selman Uluisik
    • , Natalie H Chapman
    • , Rebecca Smith
    • , Gary Adams
    • , Richard B Gillis
    • , Tabot M D Besong
    • , Nurul Samsulrizal
    • , Duoduo Wang
    • , Ian D Fisk
    • , Ni Yang
    • , Rupert Fray
    • , Stephen E Harding
    • , Jim Craigon
    • , Gregory A Tucker
    • , Don Grierson
    •  & Graham B Seymour
  2. Heygates Ltd, Bugbrooke Mills, Bugbrooke, UK.

    • Mervin Poole
  3. School of Health Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.

    • Gary Adams
    •  & Richard B Gillis
  4. Syngenta Seeds, Jealott's Hill International Research Station, Bracknell, UK.

    • Judith Sheldon
    • , Charles Baxter
    •  & Daniel Rickett
  5. Syngenta Crop Protection, Research Triangle Park, North Carolina, USA.

    • Suzy Stiegelmeyer
  6. School of Biological Sciences, Royal Holloway University of London, Egham Hill, UK.

    • Laura Perez
    •  & Paul D Fraser
  7. Plant Sciences Department, University of California, Davis, California, USA.

    • Barbara Blanco-Ulate
    •  & Ann L T Powell
  8. Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, USA.

    • Jocelyn K C Rose
    •  & Eric A Fich
  9. Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, USA.

    • Li Sun
    •  & David S Domozych

Authors

  1. Search for Selman Uluisik in:

  2. Search for Natalie H Chapman in:

  3. Search for Rebecca Smith in:

  4. Search for Mervin Poole in:

  5. Search for Gary Adams in:

  6. Search for Richard B Gillis in:

  7. Search for Tabot M D Besong in:

  8. Search for Judith Sheldon in:

  9. Search for Suzy Stiegelmeyer in:

  10. Search for Laura Perez in:

  11. Search for Nurul Samsulrizal in:

  12. Search for Duoduo Wang in:

  13. Search for Ian D Fisk in:

  14. Search for Ni Yang in:

  15. Search for Charles Baxter in:

  16. Search for Daniel Rickett in:

  17. Search for Rupert Fray in:

  18. Search for Barbara Blanco-Ulate in:

  19. Search for Ann L T Powell in:

  20. Search for Stephen E Harding in:

  21. Search for Jim Craigon in:

  22. Search for Jocelyn K C Rose in:

  23. Search for Eric A Fich in:

  24. Search for Li Sun in:

  25. Search for David S Domozych in:

  26. Search for Paul D Fraser in:

  27. Search for Gregory A Tucker in:

  28. Search for Don Grierson in:

  29. Search for Graham B Seymour in:

Contributions

S.U., N.H.C., R.S., M.P., G.A., R.B.G., T.M.D.B., J.S., S.S., N.S., D.W., L.P., I.D.F., N.Y., B.B.-U., E.A.F., L.S., and D.S.D. performed the experiments and data analysis, and J.C. did the statistical analysis. G.B.S. conceived and directed the project and G.B.S., J.C., D.G., C.B., D.R., R.F., A.L.T.P., S.E.H., P.D.F., G.A.T., and J.K.C.R. wrote the manuscript.

Competing interests

J.S., S.S., C.B. and D.R. were full-time employees of Syngenta during the study.

Corresponding author

Correspondence to Graham B Seymour.

Integrated supplementary information

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–11

Excel files

  1. 1.

    Supplementary Table 1

    Metabolite analysis PL=PLRNAi line PL5 and AZ = azygous control grown in Spring 2014. There were 3 individual fruits form each PL and AZ line with and 5 technical reps.

  2. 2.

    Supplementary Table 2

    Normalise RNASeq data for PL5 RNAi line and AZ BR4 and BR7 fruits 3 biological replicates.

  3. 3.

    Supplementary Table 3

    Genes with > 2 fold up regulation in PL5 RNAi vs AZ at BR4 with 100 or more reads in PL RNAi lines.

  4. 4.

    Supplementary Table 4

    Genes with > 2 fold up regulation in PL5 RNAi vs AZ at BR7 with 100 or more reads in PL RNAi lines.

  5. 5.

    Supplementary Table 5

    Genes with > 2 fold down-regulation in PL5 RNAi vs AZ at BR4 with 100 or more reads in PL RNAi lines.

  6. 6.

    Supplementary Table 6

    Genes with > 2 fold down-regulation in PL5 RNAi vs AZ at BR7 with 100 or more reads in PL RNAi lines.

  7. 7.

    Supplementary Table 7

    Ripening-related cell wall structure genes showing significant differences in expression between PL5 RNAi and controls based on 2 fold changes.

  8. 8.

    Supplementary Table 8

    Primers for PCR amplification.