Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature
  • Published:

Gene therapy's out-of-body experience

With an approval likely at the EMA, ex vivo gene therapy in hematopoietic stem cells appears poised for prime time.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HSC gene therapy timeline.
Figure 2: In first-generation γ-retroviral vectors, the enhancer and promoters (E/P) of the LTRs can trans-activate cellular proto-oncogenes adjacent to the vector integration sites (dashed lines).

References

  1. Qasim, W., Gaspar, H.B. & Thrasher, A.J. Update on clinical gene therapy in childhood. Arch. Dis. Child. 92, 1028–1031 (2007).

    Article  Google Scholar 

  2. Williams, D.A. & Thrasher, A.J. Concise review: lessons learned from clinical trials of gene therapy in monogenic immunodeficiency diseases. Stem Cells Transl. Med. 3, 636–642 (2014).

    Article  CAS  Google Scholar 

  3. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).

    Article  CAS  Google Scholar 

  4. Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256 (2003).

    Article  Google Scholar 

  5. Braun, C.J. et al. Gene therapy for Wiskott-Aldrich syndrome—long-term efficacy and genotoxicity. Sci. Transl. Med. 6, 227ra33 (2014).

    Article  Google Scholar 

  6. Cavazzana-Calvo, M. et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467, 318–322 (2010).

    Article  CAS  Google Scholar 

  7. Biffi, A. et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341, 1233158 (2013).

    Article  Google Scholar 

  8. Cartier, N. et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823 (2009).

    Article  CAS  Google Scholar 

  9. bluebird bio presents oncology and gene therapy data at the ASGCT 19th Annual Meeting. http://investor.bluebirdbio.com/phoenix.zhtml?c=251820&p=irol-newsArticle&ID=2166363 (9 May 2016).

  10. Hütter, G. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698 (2009).

    Article  Google Scholar 

  11. Perez, E.E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26, 808–816 (2008).

    Article  CAS  Google Scholar 

  12. Burke, B.P. et al. Engineering cellular resistance to HIV-1 infection in vivo using a dual therapeutic lentiviral vector. Mol. Ther. Nucleic Acids 4, e236 (2015).

    Article  CAS  Google Scholar 

  13. Xu, J. et al. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc. Natl. Acad. Sci. USA 110, 6518–6523 (2013).

    Article  CAS  Google Scholar 

  14. Bauer, D.E. et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342, 253–257 (2013).

    Article  CAS  Google Scholar 

  15. Wang, J. et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 33, 1256–1263 (2015).

    Article  CAS  Google Scholar 

  16. Sather, B.D. et al. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci. Transl. Med. 7, 307ra156 (2015).

    Article  Google Scholar 

  17. De Ravin, S.S. et al. Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease. Nat. Biotechnol. 34, 424–429 (2016).

    Article  CAS  Google Scholar 

  18. Kaufmann, K.B., Büning, H., Galy, A., Schambach, A. & Grez, M. Gene therapy on the move. EMBO Mol. Med. 5, 1642–1661 (2013).

    Article  CAS  Google Scholar 

  19. Shaw, K.L. & Kohn, D.B. A tale of two SCIDs. Sci. Transl. Med. 3, 97ps36 (2011).

    Article  Google Scholar 

  20. Aiuti, A. et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296, 2410–2413 (2002).

    Article  CAS  Google Scholar 

  21. Aiuti, A. et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N. Engl. J. Med. 360, 447–458 (2009).

    Article  CAS  Google Scholar 

  22. Gaspar, H.B. et al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol. Ther. 14, 505–513 (2006).

    Article  CAS  Google Scholar 

  23. Gaspar, H.B. et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci. Transl. Med. 3, 97ra80 (2011).

    PubMed  Google Scholar 

  24. Candotti, F. et al. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood 120, 3635–3646 (2012).

    Article  CAS  Google Scholar 

  25. Hacein-Bey-Abina, S. et al. A modified γ-retrovirus vector for X-linked severe combined immunodeficiency. N. Engl. J. Med. 371, 1407–1417 (2014).

    Article  Google Scholar 

  26. Hacein-Bey Abina, S. et al. Outcomes following gene therapy in patients with severe Wiskott-Aldrich syndrome. J. Am. Med. Assoc. 313, 1550–1563 (2015).

    Article  Google Scholar 

  27. Aiuti, A. et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341, 1233151 (2013).

    Article  Google Scholar 

  28. Hoban, M.D. et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 125, 2597–2604 (2015).

    Article  CAS  Google Scholar 

  29. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  Google Scholar 

  30. Peterson, C.W. et al. Multilineage polyclonal engraftment of Cal-1 gene-modified cells and in vivo selection after SHIV infection in a nonhuman primate model of AIDS. Mol. Ther. Methods Clin. Dev. 3, 16007 (2016).

    Article  Google Scholar 

  31. Mukherjee, S. & Thrasher, A.J. Gene therapy for PIDs: progress, pitfalls and prospects. Gene 525, 174–181 (2013).

    Article  CAS  Google Scholar 

  32. Cesana, D. et al. Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo. Mol. Ther. 22, 774–785 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, C., DeFrancesco, L. Gene therapy's out-of-body experience. Nat Biotechnol 34, 600–607 (2016). https://doi.org/10.1038/nbt.3592

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3592

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research