Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids

Abstract

Expansion of the genetic code with nonstandard amino acids (nsAAs) has enabled biosynthesis of proteins with diverse new chemistries. However, this technology has been largely restricted to proteins containing a single or few nsAA instances. Here we describe an in vivo evolution approach in a genomically recoded Escherichia coli strain for the selection of orthogonal translation systems capable of multi-site nsAA incorporation. We evolved chromosomal aminoacyl-tRNA synthetases (aaRSs) with up to 25-fold increased protein production for p-acetyl-L-phenylalanine and p-azido-L-phenylalanine (pAzF). We also evolved aaRSs with tunable specificities for 14 nsAAs, including an enzyme that efficiently charges pAzF while excluding 237 other nsAAs. These variants enabled production of elastin-like-polypeptides with 30 nsAA residues at high yields (50 mg/L) and high accuracy of incorporation (>95%). This approach to aaRS evolution should accelerate and expand our ability to produce functionalized proteins and sequence-defined polymers with diverse chemistries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evaluation of multi-site nsAA incorporation and expression profiles on the activity of M. jannaschii derived pAcF orthogonal translation system (OTS).
Figure 2: Evolution of chromosomally integrated aaRS variants.
Figure 3: Evolution and characterization of chromosomally integrated pAcFRS and pAzFRS variants with improved efficiencies.
Figure 4: Evaluation of multi-site nsAA incorporation by evolved aaRS variants expressed on multi-copy plasmids.
Figure 5: Quantitative MS evaluation of the purity of multi-site nsAA incorporation by evolved aaRS variants expressed on multi-copy plasmids.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Seitchik, J.L. et al. Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. J. Am. Chem. Soc. 134, 2898–2901 (2012).

    Article  CAS  Google Scholar 

  2. Chin, J.W. Expanding and reprogramming the genetic code of cells and animals. Annu. Rev. Biochem. 83, 379–408 (2014).

    Article  CAS  Google Scholar 

  3. Link, A.J., Mock, M.L. & Tirrell, D.A. Non-canonical amino acids in protein engineering. Curr. Opin. Biotechnol. 14, 603–609 (2003).

    Article  CAS  Google Scholar 

  4. Liu, C.C. & Schultz, P.G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  Google Scholar 

  5. O'Donoghue, P., Ling, J., Wang, Y.S. & Söll, D. Upgrading protein synthesis for synthetic biology. Nat. Chem. Biol. 9, 594–598 (2013).

    Article  CAS  Google Scholar 

  6. Tian, F. et al. A general approach to site-specific antibody drug conjugates. Proc. Natl. Acad. Sci. USA 111, 1766–1771 (2014).

    Article  CAS  Google Scholar 

  7. Furman, J.L. et al. A genetically encoded aza-Michael acceptor for covalent cross-linking of protein-receptor complexes. J. Am. Chem. Soc. 136, 8411–8417 (2014).

    Article  CAS  Google Scholar 

  8. Kang, M. et al. Evolution of iron(II)-finger peptides by using a bipyridyl amino acid. ChemBioChem 15, 822–825 (2014).

    Article  CAS  Google Scholar 

  9. Wang, F., Niu, W., Guo, J. & Schultz, P.G. Unnatural amino acid mutagenesis of fluorescent proteins. Angew. Chem. Int. Edn Engl. 51, 10132–10135 (2012).

    Article  CAS  Google Scholar 

  10. Li, X. & Liu, C.C. Biological applications of expanded genetic codes. ChemBioChem 15, 2335–2341 (2014).

    Article  CAS  Google Scholar 

  11. Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A. & Schuman, E.M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 103, 9482–9487 (2006).

    Article  CAS  Google Scholar 

  12. Yuet, K.P. & Tirrell, D.A. Chemical tools for temporally and spatially resolved mass spectrometry-based proteomics. Ann. Biomed. Eng. 42, 299–311 (2014).

    Article  Google Scholar 

  13. Nishi, Y. et al. Different effects of 4-hydroxyproline and 4-fluoroproline on the stability of collagen triple helix. Biochemistry 44, 6034–6042 (2005).

    Article  CAS  Google Scholar 

  14. Kothakota, S., Mason, T.L., Tirrell, D.A. & Fournier, M.J. Biosynthesis of a periodic protein containing 3-thienylalanine - a step toward genetically-engineered conducting polymers. J. Am. Chem. Soc. 117, 536–537 (1995).

    Article  CAS  Google Scholar 

  15. Bae, J.H. et al. Incorporation of beta-selenolo[3,2-b]pyrrolyl-alanine into proteins for phase determination in protein X-ray crystallography. J. Mol. Biol. 309, 925–936 (2001).

    Article  CAS  Google Scholar 

  16. Kirshenbaum, K., Carrico, I.S. & Tirrell, D.A. Biosynthesis of proteins incorporating a versatile set of phenylalanine analogs. ChemBioChem 3, 235–237 (2002).

    Article  Google Scholar 

  17. Young, D.D. et al. An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry 50, 1894–1900 (2011).

    Article  CAS  Google Scholar 

  18. Park, H.S. et al. Expanding the genetic code of Escherichia coli with phosphoserine. Science 333, 1151–1154 (2011).

    Article  CAS  Google Scholar 

  19. Umehara, T. et al. N-acetyl lysyl-tRNA synthetases evolved by a CcdB-based selection possess N-acetyl lysine specificity in vitro and in vivo. FEBS Lett. 586, 729–733 (2012).

    Article  CAS  Google Scholar 

  20. Johnson, D.B. et al. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat. Chem. Biol. 7, 779–786 (2011).

    Article  CAS  Google Scholar 

  21. Lajoie, M.J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013).

    Article  CAS  Google Scholar 

  22. Heinemann, I.U. et al. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion. FEBS Lett. 586, 3716–3722 (2012).

    Article  CAS  Google Scholar 

  23. Mukai, T. et al. Codon reassignment in the Escherichia coli genetic code. Nucleic Acids Res. 38, 8188–8195 (2010).

    Article  CAS  Google Scholar 

  24. Isaacs, F.J. et al. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333, 348–353 (2011).

    Article  CAS  Google Scholar 

  25. Wiltschi, B., Wenger, W., Nehring, S. & Budisa, N. Expanding the genetic code of Saccharomyces cerevisiae with methionine analogs. Yeast 25, 775–786 (2008).

    Article  CAS  Google Scholar 

  26. Nehring, S., Budisa, N. & Wiltschi, B. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code. PLoS One 7, e31992 (2012).

    Article  CAS  Google Scholar 

  27. Zaher, H.S. & Green, R. Fidelity at the molecular level: lessons from protein synthesis. Cell 136, 746–762 (2009).

    Article  CAS  Google Scholar 

  28. Odoi, K.A., Huang, Y., Rezenom, Y.H. & Liu, W.R. Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNAPyl pairs in the Escherichia coli BL21(DE3) cell strain. PLoS One 8, e57035 (2013).

    Article  CAS  Google Scholar 

  29. Wang, H.H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  Google Scholar 

  30. Gallagher, R.R., Li, Z., Lewis, A.O. & Isaacs, F.J. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA. Nat. Protoc. 9, 2301–2316 (2014).

    Article  CAS  Google Scholar 

  31. MacEwan, S.R. & Chilkoti, A. Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94, 60–77 (2010).

    Article  CAS  Google Scholar 

  32. Young, T.S., Ahmad, I., Yin, J.A. & Schultz, P.G. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361–374 (2010).

    Article  CAS  Google Scholar 

  33. Pédelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  Google Scholar 

  34. Sharan, S.K., Thomason, L.C., Kuznetsov, S.G. & Court, D.L. Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4, 206–223 (2009).

    Article  CAS  Google Scholar 

  35. DeVito, J.A. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Res. 36 (1), e4 (2008).

    Article  Google Scholar 

  36. Kobayashi, T. et al. Structural basis of nonnatural amino acid recognition by an engineered aminoacyl-tRNA synthetase for genetic code expansion (vol. 102, pages 1366, 2005). Proc. Natl. Acad. Sci. USA 102, 1366–1371 (2005).

    Article  CAS  Google Scholar 

  37. Schultz, K.C. et al. A genetically encoded infrared probe. J. Am. Chem. Soc. 128, 13984–13985 (2006).

    Article  CAS  Google Scholar 

  38. Wang, L., Zhang, Z., Brock, A. & Schultz, P.G. Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 100, 56–61 (2003).

    Article  CAS  Google Scholar 

  39. Cooley, R.B. et al. Structural basis of improved second-generation 3-nitro-tyrosine tRNA synthetases. Biochemistry 53, 1916–1924 (2014).

    Article  CAS  Google Scholar 

  40. Stokes, A.L. et al. Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. Mol. Biosyst. 5, 1032–1038 (2009).

    Article  CAS  Google Scholar 

  41. Ko, J.H. et al. Pyrrolysyl-tRNA synthetase variants reveal ancestral aminoacylation function. FEBS Lett. 587, 3243–3248 (2013).

    Article  CAS  Google Scholar 

  42. Guo, L.T. et al. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution. Proc. Natl. Acad. Sci. USA 111, 16724–16729 (2014).

    Article  CAS  Google Scholar 

  43. Aerni, H.R., Shifman, M.A., Rogulina, S., O'Donoghue, P. & Rinehart, J. Revealing the amino acid composition of proteins within an expanded genetic code. Nucleic Acids Res. 43, e8 (2015).

    Article  Google Scholar 

  44. Chin, J.W. et al. Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. J. Am. Chem. Soc. 124, 9026–9027 (2002).

    Article  CAS  Google Scholar 

  45. Wu, I.L. et al. Multiple site-selective insertions of noncanonical amino acids into sequence-repetitive polypeptides. ChemBioChem 14, 968–978 (2013).

    Article  CAS  Google Scholar 

  46. Meyer, D.E. & Chilkoti, A. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules 5, 846–851 (2004).

    Article  CAS  Google Scholar 

  47. Tinberg, C.E. et al. Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501, 212–216 (2013).

    Article  CAS  Google Scholar 

  48. Rovner, A.J. et al. Recoded organisms engineered to depend on synthetic amino acids. Nature 518, 89–93 (2015).

    Article  CAS  Google Scholar 

  49. Mandell, D.J. et al. Biocontainment of genetically modified organisms by synthetic protein design. Nature 518, 55–60 (2015).

    Article  CAS  Google Scholar 

  50. Lajoie, M.J. et al. Probing the limits of genetic recoding in essential genes. Science 342, 361–363 (2013).

    Article  CAS  Google Scholar 

  51. Gibson, D.G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

  52. Murphy, K.C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 180, 2063–2071 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Meyer, D.E. & Chilkoti, A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3, 357–367 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Bilguvar and J. Knight (Yale Center for Genome Analysis) for conducting next-generation sequencing experiments; T. Wu (Yale West Campus Analytical Core facility) for conducting intact MS experiments; B. Gassaway for assistance with shotgun MS experiments. We are grateful to members of the Isaacs laboratory, J. Ling and G. Church for critical discussions and feedback. This work was supported by the Defense Advanced Research Projects Agency contracts N66001-12-C-4020 and N66001-12-C-4211 to (F.J.I., J.R., D.S., and M.C.J.), U.S. Department of Energy (DE-FG02-02ER63445 to F.J.I.) grants GM22854 to D.S. and GM67193 to N.L.K. from the National Institute for General Medical Sciences, T32GM007205 and 1F30CA196191 (A.D.H.), Army Research Office (W911NF- 11-1-0445 to M.C.J.), the David and Lucile Packard Foundation (M.C.J.), the Camille Dreyfus Teacher-Scholar Program (M.C.J.), DuPont, Inc. (F.J.I.) and the Arnold and Mabel Beckman Foundation (F.J.I.).

Author information

Authors and Affiliations

Authors

Contributions

M.A. designed ELP constructs, and conducted and interpreted multi-site nsAA incorporation experiments. M.A., A.D.H. and F.J.I. designed, conducted and interpreted synthetase evolution experiments. H.-R.A. and J.R. conducted and interpreted MS experiments. I.N. and N.L.K. performed and interpreted top-down MS experiments. A.D.H, A.L.G. and F.J.I. analyzed NextGen sequencing experiments. C.F., D.W.M. and D.S. conducted and interpreted biochemical experiments. Y.-S.W. executed nsAA screens. S.H.H. tested ELP expression in vitro. M.A., A.D.H. and A.J.R. performed crystal structure analysis and target selection. N.J.M. constructed and characterized the tolC variant used for negative selection. F.J.I., J.R. and D.S. directed the studies and interpreted data. M.A. and F.J.I. wrote the paper with assistance from A.D.H., N.J.M., D.S., M.C.J., I.N., N.L.K. and J.R.

Corresponding authors

Correspondence to Dieter Söll, Jesse Rinehart or Farren J Isaacs.

Ethics declarations

Competing interests

M.A., A.D.H. and F.J.I. have filed a provisional application with the US Patent and Trademark Office on this work.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16, Supplementary Tables 1–7 and Supplementary Notes 1–7 (PDF 8120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiram, M., Haimovich, A., Fan, C. et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat Biotechnol 33, 1272–1279 (2015). https://doi.org/10.1038/nbt.3372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3372

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research