Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Deep learning for regulatory genomics

Computational modeling of DNA and RNA targets of regulatory proteins is improved by a deep-learning approach.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the deep convolutional neural network designed by Alipanahi et al.1.


  1. Alipanahi, B., Delong, A., Weirauch, M.T. & Frey, B.J. Nat. Biotechnol. 33, 831–838 (2015).

    Article  CAS  Google Scholar 

  2. Stormo, G.D. et al. Bioinformatics 16, 16–23 (2000).

    Article  CAS  Google Scholar 

  3. Weirauch, M.T. et al. Nat. Biotechnol. 31, 126–134 (2013).

    Article  CAS  Google Scholar 

  4. Bengio, Y., Courville, A. & Vincent, P. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).

    Article  Google Scholar 

  5. LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).

    Article  CAS  Google Scholar 

  6. LeCun, Y. et al. Neural Comput. 1, 541–551 (1989).

    Article  Google Scholar 

  7. Hinton, G.E., Osindero, S. & Teh, Y.-W. Neural Comput. 18, 1527–1554 (2006).

    Article  Google Scholar 

  8. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. J. Mach. Learn. Res. 15, 1929–1958 (2014).

    Google Scholar 

  9. The ENCODE Project Consortium. Nature 489, 57–74 (2012).

  10. Roadmap Epigenomics Consortium et al. Nature 518, 317–330 (2015).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Manolis Kellis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Y., Kellis, M. Deep learning for regulatory genomics. Nat Biotechnol 33, 825–826 (2015).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing