Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deep learning for regulatory genomics

Computational modeling of DNA and RNA targets of regulatory proteins is improved by a deep-learning approach.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration of the deep convolutional neural network designed by Alipanahi et al.1.

References

  1. 1

    Alipanahi, B., Delong, A., Weirauch, M.T. & Frey, B.J. Nat. Biotechnol. 33, 831–838 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Stormo, G.D. et al. Bioinformatics 16, 16–23 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Weirauch, M.T. et al. Nat. Biotechnol. 31, 126–134 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Bengio, Y., Courville, A. & Vincent, P. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013).

    Article  Google Scholar 

  5. 5

    LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).

    CAS  Article  Google Scholar 

  6. 6

    LeCun, Y. et al. Neural Comput. 1, 541–551 (1989).

    Article  Google Scholar 

  7. 7

    Hinton, G.E., Osindero, S. & Teh, Y.-W. Neural Comput. 18, 1527–1554 (2006).

    Article  Google Scholar 

  8. 8

    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. J. Mach. Learn. Res. 15, 1929–1958 (2014).

    Google Scholar 

  9. 9

    The ENCODE Project Consortium. Nature 489, 57–74 (2012).

  10. 10

    Roadmap Epigenomics Consortium et al. Nature 518, 317–330 (2015).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manolis Kellis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, Y., Kellis, M. Deep learning for regulatory genomics. Nat Biotechnol 33, 825–826 (2015). https://doi.org/10.1038/nbt.3313

Download citation

Further reading

Search

Quick links