Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy

Abstract

During embryonic development, skeletal muscles arise from somites, which derive from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of mouse embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting. We show that primary and secondary skeletal myogenesis can be recapitulated in vitro from the PSM-like cells, providing an efficient, serum-free protocol for the generation of striated, contractile fibers from mouse and human pluripotent cells. The mouse ES cells also differentiate into Pax7+ cells with satellite cell characteristics, including the ability to form dystrophin+ fibers when grafted into muscles of dystrophin-deficient mdx mice, a model of Duchenne muscular dystrophy (DMD). Fibers derived from ES cells of mdx mice exhibit an abnormal branched phenotype resembling that described in vivo, thus providing an attractive model to study the origin of the pathological defects associated with DMD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular profiling of early stages of paraxial mesoderm differentiation.
Figure 2: In vitro differentiation of ES cells toward a PSM-like fate.
Figure 3: Differentiation of multinucleated striated muscle fibers and associated Pax7+ cells from mouse ES cells in vitro.
Figure 4: Graft of purified Pax7+ cells differentiated in vitro into adult mdx muscles.
Figure 5: Muscle fibers differentiated in vitro from dystrophin-deficient mdx ES cells show an abnormal branching phenotype.
Figure 6: Myogenic differentiation of human iPS cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Rinaldi, F. & Perlingeiro, R.C. Stem cells for skeletal muscle regeneration: therapeutic potential and roadblocks. Transl. Res. 163, 409–417 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Darabi, R. et al. Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10, 610–619 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Darabi, R. et al. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat. Med. 14, 134–143 (2008).

    Article  PubMed  CAS  Google Scholar 

  4. Albini, S. et al. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres. Cell Reports 3, 661–670 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. Salani, S. et al. Generation of skeletal muscle cells from embryonic and induced pluripotent stem cells as an in vitro model and for therapy of muscular dystrophies. J. Cell. Mol. Med. 16, 1353–1364 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Tanaka, A. et al. Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro. PLoS ONE 8, e61540 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Abujarour, R. et al. Myogenic differentiation of muscular dystrophy-specific induced pluripotent stem cells for use in drug discovery. Stem Cells Transl. Med. 3, 149–160 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Braun, T. & Arnold, H.H. ES-cells carrying two inactivated myf-5 alleles form skeletal muscle cells: activation of an alternative myf-5-independent differentiation pathway. Dev. Biol. 164, 24–36 (1994).

    Article  PubMed  CAS  Google Scholar 

  9. Rohwedel, J. et al. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87–101 (1994).

    Article  PubMed  CAS  Google Scholar 

  10. Braun, T. & Arnold, H.H. Myf-5 and myoD genes are activated in distinct mesenchymal stem cells and determine different skeletal muscle cell lineages. EMBO J. 15, 310–318 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zheng, J.K. et al. Skeletal myogenesis by human embryonic stem cells. Cell Res. 16, 713–722 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Mizuno, Y. et al. Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J. 24, 2245–2253 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Tanaka, M. et al. BMP inhibition stimulates WNT-dependent generation of chondrogenic mesoderm from embryonic stem cells. Stem Cell Res. (Amst.) 3, 126–141 (2009).

    Article  CAS  Google Scholar 

  14. Hwang, Y. et al. Directed in vitro myogenesis of human embryonic stem cells and their in vivo engraftment. PLoS ONE 8, e72023 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chang, H. et al. Generation of transplantable, functional satellite-like cells from mouse embryonic stem cells. FASEB J. 23, 1907–1919 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. Xu, C. et al. A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155, 909–921 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sakurai, H. et al. In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS ONE 7, e47078 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sakurai, H. et al. Bidirectional induction toward paraxial mesodermal derivatives from mouse ES cells in chemically defined medium. Stem Cell Res. (Amst.) 3, 157–169 (2009).

    Article  CAS  Google Scholar 

  19. Sakurai, H., Okawa, Y., Inami, Y., Nishio, N. & Isobe, K. Paraxial mesodermal progenitors derived from mouse embryonic stem cells contribute to muscle regeneration via differentiation into muscle satellite cells. Stem Cells 26, 1865–1873 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. Borchin, B., Chen, J. & Barberi, T. Derivation and FACS-mediated purification of PAX3+/PAX7+ skeletal muscle precursors from human pluripotent stem cells. Stem Cell Reports 1, 620–631 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hosoyama, T., McGivern, J.V., Van Dyke, J.M., Ebert, A.D. & Suzuki, M. Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture. Stem Cells Transl. Med. 3, 564–574 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gouti, M. et al. In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol. 12, e1001937 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Tan, J.Y., Sriram, G., Rufaihah, A.J., Neoh, K.G. & Cao, T. Efficient derivation of lateral plate and paraxial mesoderm subtypes from human embryonic stem cells through GSKi-mediated differentiation. Stem Cells Dev. 22, 1893–1906 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Shelton, M. et al. Derivation and expansion of PAX7-positive muscle progenitors from human and mouse embryonic stem cells. Stem Cell Rev. 3, 516–529 (2013).

    Google Scholar 

  25. Ozbudak, E.M., Tassy, O. & Pourquie, O. Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation. Proc. Natl. Acad. Sci. USA 107, 4224–4229 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Wittler, L. et al. Expression of Msgn1 in the presomitic mesoderm is controlled by synergism of WNT signalling and Tbx6. EMBO Rep. 8, 784–789 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kazanskaya, O. et al. R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Dev. Cell 7, 525–534 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. Tonegawa, A., Funayama, N., Ueno, N. & Takahashi, Y. Mesodermal subdivision along the mediolateral axis in chicken controlled by different concentrations of BMP-4. Development 124, 1975–1984 (1997).

    PubMed  CAS  Google Scholar 

  29. Hutcheson, D.A., Zhao, J., Merrell, A., Haldar, M. & Kardon, G. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin. Genes Dev. 23, 997–1013 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chargé, S.B. & Rudnicki, M.A. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84, 209–238 (2004).

    Article  PubMed  Google Scholar 

  31. White, R.B., Bierinx, A.S., Gnocchi, V.F. & Zammit, P.S. Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev. Biol. 10, 21 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Messina, G. et al. Nfix regulates fetal-specific transcription in developing skeletal muscle. Cell 140, 554–566 (2010).

    Article  PubMed  CAS  Google Scholar 

  33. Relaix, F., Rocancourt, D., Mansouri, A. & Buckingham, M.A. Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435, 948–953 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. Sambasivan, R. & Tajbakhsh, S. Skeletal muscle stem cell birth and properties. Semin. Cell Dev. Biol. 18, 870–882 (2007).

    Article  PubMed  CAS  Google Scholar 

  35. Rahimov, F. & Kunkel, L.M. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J. Cell Biol. 201, 499–510 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Allen, D.G. & Whitehead, N.P. Duchenne muscular dystrophy--what causes the increased membrane permeability in skeletal muscle? Int. J. Biochem. Cell Biol. 43, 290–294 (2011).

    Article  PubMed  CAS  Google Scholar 

  37. Matsuda, R., Nishikawa, A. & Tanaka, H. Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue: evidence of apoptosis in dystrophin-deficient muscle. J. Biochem. 118, 959–964 (1995).

    Article  PubMed  CAS  Google Scholar 

  38. Friedrich, O. et al. Microarchitecture is severely compromised but motor protein function is preserved in dystrophic mdx skeletal muscle. Biophys. J. 98, 606–616 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Minami, I. et al. A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep. 2, 1448–1460 (2012).

    Article  PubMed  CAS  Google Scholar 

  40. Biressi, S., Molinaro, M. & Cossu, G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev. Biol. 308, 281–293 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. McCracken, K.W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Li, W. & Ding, S. Human pluripotent stem cells: decoding the naive state. Sci. Transl. Med. 3, 76ps10 (2011).

    Article  PubMed  CAS  Google Scholar 

  44. Merrick, D., Stadler, L.K., Larner, D. & Smith, J. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation. Dis. Model. Mech. 2, 374–388 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Chan, S. & Head, S.I. The role of branched fibres in the pathogenesis of Duchenne muscular dystrophy. Exp. Physiol. 96, 564–571 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. Goodall, M.H., Ward, C.W., Pratt, S.J., Bloch, R.J. & Lovering, R.M. Structural and functional evaluation of branched myofibers lacking intermediate filaments. Am. J. Physiol. Cell Physiol. 303, C224–C232 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Pavlath, G.K. A new function for odorant receptors: MOR23 is necessary for normal tissue repair in skeletal muscle. Cell Adh. Migr. 4, 502–506 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Montarras, D. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064–2067 (2005).

    Article  PubMed  CAS  Google Scholar 

  49. Mouly, V. et al. Myoblast transfer therapy: is there any light at the end of the tunnel? Acta Myol. 24, 128–133 (2005).

    PubMed  CAS  Google Scholar 

  50. Collins, C.A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. Yasuhiko, Y. et al. Tbx6-mediated Notch signaling controls somite-specific Mesp2 expression. Proc. Natl. Acad. Sci. USA 103, 3651–3656 (2006).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J.C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Relaix, F. et al. The transcriptional activator PAX3-FKHR rescues the defects of Pax3 mutant mice but induces a myogenic gain-of-function phenotype with ligand-independent activation of Met signaling in vivo. Genes Dev. 17, 2950–2965 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kress, C., Vandormael-Pournin, S., Baldacci, P., Cohen-Tannoudji, M. & Babinet, C. Nonpermissiveness for mouse embryonic stem (ES) cell derivation circumvented by a single backcross to 129/Sv strain: establishment of ES cell lines bearing the Omd conditional lethal mutation. Mamm. Genome 9, 998–1001 (1998).

    Article  PubMed  CAS  Google Scholar 

  56. Cheng, T.C., Wallace, M.C., Merlie, J.P. & Olson, E.N. Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science 261, 215–218 (1993).

    Article  PubMed  CAS  Google Scholar 

  57. Sambasivan, R. et al. Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev. Cell 16, 810–821 (2009).

    Article  PubMed  CAS  Google Scholar 

  58. Ying, Q.L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Boulting, G.L. et al. A functionally characterized test set of human induced pluripotent stem cells. Nat. Biotechnol. 29, 279–286 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Dequéant, M.L. et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595–1598 (2006).

    Article  PubMed  CAS  Google Scholar 

  62. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  PubMed  CAS  Google Scholar 

  63. Tassy, O. & Pourquie, O. Manteia, a predictive data mining system for vertebrate genes and its applications to human genetic diseases. Nucleic Acids Res. 42 (Database issue), D882–D891 (2014).

    Article  PubMed  CAS  Google Scholar 

  64. Henrique, D. et al. Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790 (1995).

    Article  PubMed  CAS  Google Scholar 

  65. Saga, Y., Hata, N., Koseki, H. & Taketo, M.M. Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev. 11, 1827–1839 (1997).

    Article  PubMed  CAS  Google Scholar 

  66. Niederreither, K., Subbarayan, V., Dolle, P. & Chambon, P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet. 21, 444–448 (1999).

    Article  PubMed  CAS  Google Scholar 

  67. Crossley, P.H. & Martin, G.R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995).

    PubMed  CAS  Google Scholar 

  68. Mathew, S.J. et al. Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development 138, 371–384 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Henderson, K. Hnia, M. Knockaert and members of the Pourquié laboratory for comments. We are grateful to J. Pace, T. Knauer-Meyer, G. Vilhais-Neto, and M. McLaird for help. We thank C. Ebel, C. Thibault-Carpentier, A. Magloth-Roth and the Imaging Facility. We thank the microinjection and phenotyping teams of the Mouse Clinical Institute. We thank M. Durnin from the Stowers Institute Cell Culture and Animal Facilities. This work was supported by an advanced grant from the European Research Council to O.P., by the Stowers Institute for Medical Research, by the Howard Hughes Medical Institute, by the FP7 EU grant Plurimes (agreement no. 602423) and by a strategic grant from the French Muscular Dystrophy Association (AFM) to O.P. The Venus Plasmid was a kind gift of A. Miyawaki. The anti-Tbx6 antibody was a kind gift of Y. Saga51.

Author information

Authors and Affiliations

Authors

Contributions

J.C. designed and performed experiments, analyzed data and coordinated the project. M.O. performed the PSM microdissection series. Z.A.T. transposed the differentiation protocol to hiPS cells and characterized the human cultures with help from C.M. and B.G. B.G., A.M. and G.G. carried out most of the mouse ES cell differentiation experiments, and M.H. carried out hiPS cell and hES cell experiments, under J.C.'s supervision. O.S. validated the Myog-repV line. A.H. helped coordinate experiments. F.B. contributed to hiPS cell culture and differentiation. Y.Z. helped develop the serum-free protocol. P.M. and O.T. helped with microarray data analysis. T.C. helped analyze mdx cultures. A.B. contributed experimentally to the early project. L.K. provided technical support. J.-M.G. generated reporter constructs. S.H., B.D. and F.R. provided the Pax3-GFP ES cells. B.G.-M. and S.T. provided expertise and the Pax7-GFP ES cells. S.V. helped establish mdx ES cells. E.G. provided Rag1-mdx mice and performed transplantation. O.P. conceived and supervised the overall project. O.P. and J.C. performed the final data analysis and wrote the manuscript.

Corresponding author

Correspondence to Olivier Pourquié.

Ethics declarations

Competing interests

The work described in this article is partially covered by patent application no. PCT/EP2012/066793 (publication no. WO2013030243 A1). O.P. and J.C. are co-founders and shareholders of Anagenesis Biotechnologies, a startup company specializing in production of muscle cells in vitro for cell therapy and drug screening.

Integrated supplementary information

Supplementary Figure 1 Generation of a database of gene expression profiles in the differentiating PSM

Top: Histograms representing expression profiles (generated as described in Fig 1b) of genes associated to major signaling pathways involved in PSM patterning and differentiation. Bottom: schematic representation of the signaling gradients and of the major posterior paraxial mesoderm domains (color-coded) identified by clustering analysis (Fig 1d). Orange bar marks the determination front level where cells acquire their segmental identity.

Supplementary Figure 2 Microarrays Gene signature expression analysis in M+ and P+ differentiated in CDL medium

(a) Fold change versus Fold change (FcFc) scatter plot comparing FACS-sorted M+ cells differentiated for 4 days in CDL medium to ES cells and posterior PSM microarrays to ES cells microarray expression data sets (Multiplot, GenePattern). The ratio of expression for each probesets and for each comparison is plotted on x axis and y axis, respectively (Fold Change, logarithmic scale). Probesets (about 3,400) with a t-test p <0.05 (Figure 1e) are shown. Known signature genes specific for the posterior PSM are highlighted in green (b) FcFc scatter plot comparing FACS-sorted P+ cells differentiated for 6 days in CDL medium to ES cells and anterior PSM microarrays to ES cells microarray expression data sets (Multiplot, GenePattern). The ratio of expression for each probesets for each comparison is plotted on x axis and y axis, respectively (Fold Change, logarithmic scale). Probesets (about 3,400) with a t-test p <0.05 (Figure 1e) are shown. Known signature genes specific for the anterior PSM are highlighted in blue. (c) FcFc scatter plot comparing microarray expression data sets of FACS-sorted P+ and M+ cells differentiated in CDL medium and P+ and M+ cells differentiated in RDL medium (Multiplot, GenePattern). The ratio of expression for each probesets for each comparison were plotted on x axis and y axis (Fold Change, logarithmic scale). Probesets (about 3,400) with a t-test p <0.05 (Figure 1e) are shown. Known signature genes specific for the posterior (green) and anterior (blue) PSM are highlighted.

Supplementary Figure 3 Membrane integrity of mdx muscle fibers differentiated in vitro.

Control (a, b) and mdx myofibers (c, d) cultures stained with Evans blue dye (EBD) with and without prior membrane permeabilization with saponin. Scale bar 200 µm

Supplementary Figure 4 Comparison of differentiation efficiency with the Shelton et al, (2014) protocol

hiPS cells were differentiated either according the protocol described in this study, (Chal et al, 2015) or according to Shelton et al, 2014.; for 4 weeks (a) and 6-7 weeks (b) respectively. (a) Side by side comparison of 4 -weeks old cultures stained for fast MyHC (upper panels), and MyHC (MF20, red) /Pax7 (green) (lower panels). Cell distributions (DAPI staining, blue) are shown for each field as an upper right corner inset. Scale bar is 500μm. (b) 6-7 weeks old culture stained for Fast MyHC, at lower (upper panels, counterstained with DAPI) and higher (lower panels) magnifications. Scale bars are 400 and 100μm, respectively.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chal, J., Oginuma, M., Al Tanoury, Z. et al. Differentiation of pluripotent stem cells to muscle fiber to model Duchenne muscular dystrophy. Nat Biotechnol 33, 962–969 (2015). https://doi.org/10.1038/nbt.3297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.3297

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research