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RNA-seq experiments generate reads derived not only from 
mature RNA transcripts but also from pre-mRNA. Here we 
present a computational approach called exon-intron split 
analysis (EISA) that measures changes in mature RNA and 
pre-mRNA reads across different experimental conditions to 
quantify transcriptional and post-transcriptional regulation 
of gene expression. We apply EISA to 17 diverse data sets to 
show that most intronic reads arise from nuclear RNA and 
changes in intronic read counts accurately predict changes 
in transcriptional activity. Furthermore, changes in post-
transcriptional regulation can be predicted from differences 
between exonic and intronic changes. EISA reveals both 
transcriptional and post-transcriptional contributions to 
expression changes, increasing the amount of information that 
can be gained from RNA-seq data sets.

Cellular RNAs are regulated at multiple stages, including transcrip-
tion, RNA maturation and degradation. Several analytic methods 
have been developed to measure these processes on a transcriptome-
wide scale. For example, global run-on sequencing (GRO-seq)1 uses 
incorporation of a nucleotide analog to enrich for nascent RNA. In 
Nascent-seq2,3, newly transcribed RNAs are isolated by purification 
of their complex with proteins and the DNA template. Cellular frac-
tionation techniques4 have also been adapted to measure nascent 
transcripts, which are enriched in the nucleus. mRNA half-lives have 
been determined, for example, by blockage of transcription followed 
by transcriptional profiling5. RNA sequencing, the most widely used 
method for transcriptome analysis, has been applied in numerous 
studies to determine steady-state mRNA levels6,7 and alternative 
splicing events8 and to identify previously unknown transcripts and 
noncoding RNAs9–11. In general, these protocols aim to enrich for 
mature mRNA by selection of polyadenylated RNA or by depletion 
of ribosomal RNA.

Many computational methods (reviewed in refs. 12,13) have 
been developed for the analysis of RNA-seq data, to enable spliced 

alignment14,15, transcript assembly16,17, transcript quantification14,18 
and differential expression analysis19–21. Although RNA-seq mostly 
generates reads that map to exons, it also captures less abundant 
intronic sequences6. However, their interpretation has remained 
controversial. Some have suggested that they originate from DNA 
contamination and can thus be used as a quality metric for RNA-seq 
data22 (see also RNA-seq guidelines of the Roadmap Epigenomics 
Consortium, http://www.roadmapepigenomics.org/), whereas others 
have hypothesized that they stem from unknown exons or intronic 
enhancers6,7. In a study based on exon arrays, probes mapping to 
introns were used to investigate pre-mRNA dynamics23. Three 
recent studies based on RNA-seq provided evidence that intronic 
reads might correlate with transcriptional activity. In two of these, 
the read coverage along introns was related to nascent transcrip-
tion in combination with co-transcriptional splicing events24 and 
later was used to fit a detailed transcriptional model within a single  
sample25. More recently, levels of exonic reads were found to lag  
15 min behind levels of intronic reads for a set of oscillating tran-
scripts during Caenorhabditis elegans development, suggesting that 
intronic levels are a proxy for nascent transcription26.

Here we analyze 17 published RNA-seq data sets covering a wide 
range of cell types and perturbations. We find that changes in intronic 
read counts are not technical artifacts but instead directly measure 
changes in transcriptional activity. Using EISA to compare intronic 
and exonic changes across different experimental conditions allows 
the separation of transcriptional and post-transcriptional contribu-
tions to observed changes in steady-state RNA levels, without the need 
for additional experiments such as GRO-seq1 or Nascent-seq2,3. This 
approach opens up the possibility of using standard RNA-seq experi-
ments to determine whether expression changes observed in gene 
knockout, knock-down or overexpression experiments are caused by 
transcriptional or post-transcriptional mechanisms, thereby provid-
ing information pertinent to gene function.

RESULTS
Quantifying expression changes in exons and introns
Given that exonic reads essentially reflect mature cytoplasmic 
mRNAs, we determined whether in silico separation of exonic and 
intronic reads from a standard RNA-seq experiment could be used 
to separate transcriptional and post-transcriptional contributions to 
expression changes. In our approach, expression changes across con-
ditions were quantified separately for exonic (∆exon) and intronic 
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reads (∆intron) and the relationship between ∆exon and ∆intron 
was investigated (Fig. 1a). To test the feasibility of the approach, we 
monitored the dynamics of intron and exon levels of single genes 
under well-characterized transcriptional and post-transcriptional 
perturbations. We first calculated expression changes of glucocor-
ticoid receptor target genes upon stimulation of human A549 cells 
with glucocorticoid dexamethasone27. From a set of genes shown 
previously to be transcriptionally induced in a receptor-dependent 
manner27, we selected a subset of five genes and determined their 
RNA levels by counting either reads mapping to exons (which is the 
common approach) or only reads mapping to introns. As expected, 
the selected genes were upregulated on the exonic level upon stimula-
tion (Fig. 1b). Notably, a similar upregulation was observed on the 
intronic level, suggesting that the intronic reads may provide infor-
mation about the transcriptional changes that occur upon treatment. 
However, intronic changes do not always mirror exonic changes.  
We performed the same analysis for five genes knocked down in dif-
ferent short interfering RNA (siRNA) experiments (Supplementary 
Table 1). In all cases, we observed exonic downregulation of the tar-
geted genes whereas intronic levels remained virtually unchanged 
(Fig. 1c). The correlated intronic and exonic changes during direct 
transcriptional activation (Fig. 1b) and the lack of intronic changes 
upon post-transcriptional perturbations (Fig. 1c) indicate that a 
comparison of exonic and intronic expression changes can separate 
transcriptional and post-transcriptional effects. Performing such an 
analysis on a genome-wide scale poses challenges concerning intron 
annotation and read coverage. We conservatively define the intronic 
part of a gene as all nucleotides in the gene body that do not overlap 
an exon from any known transcript isoform. In addition, we consider 
only genes that have sufficient exonic and intronic coverage and do 
not overlap with other genes (Supplementary Data 1). To account 
for differences in the exonic/intronic ratio between different sam-
ples, we performed library-size normalization for exons and introns 
separately (Online Methods). Although it has been shown that the 
intronic yield is decreased in polyA RNA compared to total RNA24, we 
also observed many polyA-enriched data sets with sufficient intronic 
coverage for quantification (see below). We thus considered both total 
RNA and polyA-RNA data sets for further analysis.

Intronic changes measure changes in transcription
To test whether changes in intronic reads can be used to meas-
ure changes in transcription on a genome-wide scale, we reana-
lyzed data from three experiments in which transcription (using 
Nascent-seq or GRO-seq) as well as mRNA expression had been  
profiled simultaneously.

In one system, mouse bone marrow–derived macrophages were 
stimulated with lipid A, and RNA was sequenced from fractionated 

(chromatin, cytoplasm) and unfractionated cells (polyA RNA) after 
0, 30, 60 and 120 min28 (Supplementary Data 2). Figure 2a shows 
the time evolution of expression levels of exons and introns in unfrac-
tionated RNA-seq as well as the chromatin and cytoplasmic fractions 
separately for all originally identified clusters of lipid-A-induced tran-
scripts28. We hypothesized that if intronic reads in standard unfrac-
tionated RNA reflect changes in transcription, the intronic expression 
patterns should more closely follow the chromatin fraction, which  
represents nascent RNA2,3, than the cytoplasmic fraction. This is indeed 
the case when considering all genes in all clusters (P = 1.03 × 10−9,  
one-sided paired t-test). Considering each cluster separately, we 
obtained significant P-values (<0.02) for the first four clusters A1, A2, 
B and C. As the clusters D, E and F contained genes that change less 
abruptly over time, we speculate that in these cases it is more difficult 
to detect differences between transcription and mRNA levels in the 
cytoplasm. As expected, the exonic changes of the unfractionated pool 
closely followed the cytoplasmic fraction (Fig. 2a, yellow and green). 
Taken together, these findings suggest that a single experiment using 
unfractionated RNA gives insight into both nascent transcription and 
cytoplasmic RNA levels.

We then investigated an experiment on rhythmic expression in 
mouse liver29. RNA levels were determined in 4-h intervals over 48 h, 
using both total RNA-seq and Nascent-seq, in which nascent RNA was 
extracted using a similar approach as in the macrophage activation 
study28,29. In mouse liver, roughly 10% of genes show rhythmic expres-
sion with a 24-h period29–31. Using Nascent-seq as a reference, we 
applied stringent selection criteria and identified 799 genes with rhyth-
mic transcription (Online Methods and Supplementary Script 1).  
These genes displayed phases over the entire 24 h (Fig. 2b). When 
sorted according to the Nascent-seq phase, a clear oscillatory pattern 
was also evident in both exonic and intronic levels from the total  
RNA-seq experiment (Fig. 2b). Close inspection revealed that intronic 
peak activity was generally shifted to earlier time points with respect to 
exonic peak activity. For example, genes with late phases had their peak 
intronic levels at 6 or 10 h, whereas exonic levels reached their maxima 
at 10 or 14 h (Fig. 2b, bottom). To globally quantify these shifts in activ-
ity, we also inferred phases for the oscillating genes using only intronic 
or exonic reads. Compared to the exonic phases, intronic phases are 
significantly shifted toward earlier time points (P = 1.6 × 10−20),  
and, importantly, did not shift systematically with respect to  
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Figure 1  Comparison of exonic and intronic changes for single genes 
under controlled transcriptional and post-transcriptional perturbations.  
(a) Illustration of the computational approach. mRNA is displayed in 
the form of nascent unspliced or partially spliced transcripts (nucleus) 
and mature mRNAs (cytoplasm). RNA-seq reads that map to annotated 
transcripts are separated into exonic (blue) and intronic reads (red).  
The differences in exonic (∆exon) and intronic (∆intron) read counts 
between experimental conditions are then quantified and compared 
to each other. (b) ∆exon and ∆intron after treatment of human A549 
cells with the glucocorticoid dexamethasone. Five target genes of the 
glucocorticoid receptor known to be upregulated in a receptor-dependent 
manner27 are shown. Numbers indicate the exonic and intronic read 
counts with and without treatment. (c) Same as in b for siRNA-target 
genes in five different knock-down experiments.

np
g

©
 2

01
5 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



724	 VOLUME 33  NUMBER 7  JULY 2015   nature biotechnology

A n a ly s i s

the phases inferred from Nascent-seq (Fig. 2c). Similar results have 
been obtained from two additional studies of circadian rhythm in 
mouse liver31,32. In these cases, intronic and exonic phases were 
directly compared to each other, as no matching Nascent-seq data 
were available. In all cases, a consistent and significant lag of exonic 
versus intronic phases was found (Fig. 2d, all P < 1.4 × 10−9).

An alternative method to measure transcription is GRO-seq1, in 
which nascent transcripts are labeled by incorporation of a nucleotide 
analog, enriched and sequenced. We reanalyzed GRO-seq as well as 
RNA-seq data from IMR90 fibroblasts before and after stimulation 
by TNF-α (ref. 33). The transcriptional changes upon stimulation as 
measured by GRO-seq and the changes inferred from intronic read 
counts from the RNA-seq experiment were highly correlated (Fig. 2e; 
R = 0.79), in contrast to exonic changes, which show a lower similarity 
with GRO-seq (Fig. 2f; R = 0.56). The difference is highly significant 

(P < 10−100), based on a test of difference between two correlated cor-
relations34. Many genes that were upregulated according to GRO-seq 
did not change at the exonic level. Given that the profiling was done 
at an early time point (1 h after stimulation), it is likely that some 
transcriptional changes had not yet percolated to the mature mRNA 
level. Taken together, our findings support the idea that intronic reads 
can be used as a measure for changes in nascent transcription.

EISA recovers the role of transcription during neurogenesis
We applied EISA to transcriptome changes in a well-characterized, 
highly homogeneous differentiation system, in which mouse embry-
onic stem cells (ESCs) are differentiated into terminal neurons35 
(Supplementary Data 3). It was previously shown that most of the 
variation in gene expression in ESCs and terminal neurons can be 
predicted from chromatin marks, indicating that most changes in  

Figure 2  Intronic changes reflect changes 
in transcriptional activity. (a) Time-course 
experiment of RNA levels from fractionated and 
unfractionated cells after lipid A stimulation of 
mouse bone marrow-derived macrophages28. 
Shown are the average expression changes for 
all seven originally identified clusters of genes 
with similar expression profiles (A1 to F).  
The time point 15 min from the original 
fractionated data set was not used because 
it was not profiled in the unfractionated time 
course. To test if the unfractionated intronic 
expression levels were significantly more similar 
to the chromatin fraction than the cytoplasmic 
fraction, we performed a one-sided, paired t-test 
comparing the absolute differences between the 
unfractionated intronic and chromatin levels 
(dcr) to the absolute differences between the 
unfractionated intronic and cytoplasm levels 
(dcy). These were calculated as follows:  
dcr = abs(unfract.intronic – chromatin) and  
dcy = abs(unfract.intronic – cytoplasm), where 
dcr and dcy contain paired expression values of 
the respective genes at any of the probed time 
points. *, P < 0.02. (b) Changes in nascent, 
intronic and exonic RNA levels of circadian 
genes during day-night cycles in mouse liver29. 
Samples were taken in 4-h intervals over 48 h  
(x axis, starting at 0 h for Nascent-seq and 2 h  
for RNA-seq). Oscillating genes have been 
identified and sorted by phase (left panel) based 
on Nascent-seq data. The middle and right 
panels show z-scores of intronic and exonic 
expression levels for the same genes based on 
total RNA-seq data. (c) Distribution of time 
lags between intronic (blue) or exonic (red) and 
nascent phases. Mean phase differences  
are indicated in the key and by vertical lines. 
The shift between the two distributions was 
assessed by a Wilcoxon rank sum test.  
(d) Distribution of time lags between exonic 
and intronic phases for the three circadian data 
sets analyzed29,31,32. Mean phase differences 
are indicated in the legend. Wilcoxon signed 
rank tests were performed to assess if the 
distributions are significantly shifted with respect  
to zero. (e) Comparison of changes in GRO-seq 
to changes in intronic RNA levels in IMR90 
fibroblasts 1 h after stimulation by TNF-α. (f) Same as e but comparing changes in GRO-seq to changes in exonic RNA levels. The P value (see text) 
was obtained from a test for the difference between two correlated correlations using the r.test function in the R package psych. This test determines 
whether two correlation coefficients are significantly different from one another, given that two variables are compared to a third common variable.
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expression are transcriptionally driven36. When readdressing this 
finding by quantifying both exonic and intronic changes from 
ESCs and terminal neurons using total RNA36,37, we found very 
high agreement between exonic and intronic changes (Fig. 3a;  
R = 0.9). This provides direct evidence from standard RNA-seq alone 
that the majority of the changes in expression can be attributed to 
transcriptional changes. Nonetheless, we wondered if the small differ-
ences between ∆exon and ∆intron could reflect post-transcriptional 
regulation. Under a simple model of mRNA regulation, steady-state 
mRNA levels (m) are equal to the ratio of transcription (β) and degra-
dation rate (α), m = β/α or log2(m) = log2(β) – log2(α)23. In a differ-
ential setup, changes in degradation rate thus correspond to changes 
in steady-state mRNA levels minus changes in transcription rate, that 
is, ∆log2(m) = ∆log2(β) – ∆log2(α), or ∆exon – ∆intron = −∆log2(α), 
assuming that changes in steady-state mRNA levels correspond to 
∆exon and changes in transcriptional rate to ∆intron. mRNA half-life, 
on the other hand, is inversely proportional to the degradation rate 
(t1/2 ~ 1/α) and thus, in a differential setup, ∆log2(t1/2) = −∆log2(α). 
Thus, altered post-transcriptional regulation of mRNAs should be 
manifested as altered mRNA stability, ∆log2(t1/2) = ∆exon − ∆intron. 
We therefore compared ∆exon – ∆intron to changes in log2 mRNA 
half-lives36 from ESCs to terminal neurons (Fig. 3b) and found that 
they were significantly correlated (Fig. 3c; R = 0.29, P < 2.2 × 10−16). 
The fact that the correlation coefficient is not particularly high is not 
surprising given the high similarity of ∆exon and ∆intron and the sub-
stantial noise present in half-life measurements38. Notably, the correla-
tion is reduced significantly (P = 3.3 × 10−20, test of difference between 
two correlated correlations34) when comparing half-lives to ∆exon  
(R = 0.12) and absent when comparing them to ∆intron (R = −0.002,  
P = 1.2 × 10−50). This provides direct evidence that ∆exon is a com-
posite measure of transcriptional and post-transcriptional changes 
and that the purely post-transcriptional component can be recovered 
by subtracting intronic from exonic changes.

EISA recovers the post-transcriptional impact of microRNAs
We next applied EISA to experiments with purely post-transcriptional 
perturbations mediated by microRNAs (miRNAs). The impact 
of a particular miRNA on its target messages can be probed by a 

transfection or inhibition experiment and  
subsequent expression profiling39,40. To investi
gate the influence of transfected miRNAs on  
exonic and intronic RNA levels, we analyzed 
polyA-RNA-seq data from a miR-1 transfec-
tion experiment in HeLa cells profiled after 
12 and 32 h41 (Supplementary Data 4). After 
12 h, several genes were downregulated at the 
exonic level, but were virtually unchanged in 
introns (Fig. 4a). Because intronic changes 
measure transcriptional effects, we can 
directly deduce from this figure alone that 
miR-1 is a post-transcriptional regulator, 
without any prior knowledge of miRNA func-
tion. At 32 h, additional expression changes 
started to emerge, which were correlated 
between introns and exons and thus likely 
reflect transcriptional changes (Fig. 4b). We 
hypothesize that these are secondary effects 
of the miRNA transfection. Because direct 
targets of miRNAs are enriched in miRNA 
seed matches in their 3′UTR39, we can test 
this hypothesis by monitoring the localiza-

tion of miR-1 seed-containing genes within Figure 4a,b. Indeed 
this reveals that genes that were downregulated at the exonic as well 
as at the intronic level were not enriched for miRNA seed sites in 
their 3′UTRs (Fig. 4a,b, insets). We tested statistically if the shift 
between miRNA targets and nontargets was different in ∆exon and 
∆intron (two-way ANOVA; Supplementary Fig. 1a) and obtained  
P values of 7.2 × 10−87 at 12 h and 8.0 × 10−59 at 32 h. Thus, EISA 
recovered the post-transcriptional effect of miRNAs. This opens 
up the possibility of separating primary from secondary effects in 
miRNA transfection or inhibition experiments.

To generalize these findings, we performed similar analyses on 
a wide range of additional transfection experiments, representing 
two different miRNAs and four different cell types42 (Fig. 4c and 
Supplementary Data 4), all profiled at 24 h after transfection using 
polyA-RNA-seq. Overall, these experiments revealed a similar picture 
as obtained for miR-1. Although the profiling was done at a fixed time 
after transfection, the amount of exonic changes varied substantially 
between experiments, presumably owing to variable transfection effi-
ciencies and/or kinetics of target inhibition. We sorted the experi-
ments in Figure 4c by the amount of exonic variation from left to right. 
This revealed progressively increasing secondary effects. In miRNA 
transfection experiments, targets are typically identified by selecting 
the most downregulated genes (∆exon). However, our analysis sug-
gests that intronic information should help to reduce the number of 
false positives due to secondary effects. To test this, we sorted genes 
according to ∆exon – ∆intron, ∆exon or ∆intron and calculated the 
fraction of seed-containing genes using increasing numbers of top-
ranked genes (Fig. 4d). In the presence of strong secondary effects 
(HeLa cells in Fig. 4d), ∆exon – ∆intron clearly improves identifica-
tion of strong targets over ∆exon. For example, considering the top 
50 genes in the miR-124 transfection, 70% of genes contained a seed 
match if ranked by ∆exon, but 92% if ranked by ∆exon – ∆intron. 
A similar improvement is observed for miR-155 (50% versus 86%). 
In data sets with weak secondary effects (IMR90 and HEK293 cells 
in Fig. 4d), ∆exon and ∆exon – ∆intron performed equally well for 
selecting targets, whereas in the absence of secondary effects (Huh7 
cells in Fig. 4d), target selection on ∆exon performed best. We believe 
that in cases where there are no secondary effects to be accounted 
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calculated as in Figure 2e,f.
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for, subtracting ∆intron provides no benefit 
and only introduces additional measure-
ment noise. ∆intron by itself does not enrich 
for miRNA target genes, as expected from a 
purely transcriptional measure. We again sta-
tistically assessed whether the shift between 
miRNA targets and nontargets was different 
between ∆exon and ∆intron and obtained 
similar results as for miR-1 (Supplementary 
Fig. 1b). Taken together, these findings indi-
cate that EISA can be used to estimate the 
extent of secondary effects in miRNA transfection experiments and 
to improve the selection of direct miRNA targets.

Application of EISA to different cell lines and tissues
To further study the relationship between transcriptional and post-
transcriptional regulation, we investigated RNA-seq data from nine 
human ENCODE cell lines9 (Supplementary Data 5). H1 ESCs pro-
vide an example of intronic versus exonic changes, relative to the 
average overall cell lines (Fig. 5a). The changes were highly correlated 
in all nine cell lines (Fig. 5a,b), whereas ∆intron and ∆exon were 
not correlated between different cell lines (Fig. 5b, off-diagonal). We 
repeated our analysis on transcriptomic data of 16 human tissues 
made publicly available by Illumina. This analysis yielded very simi-
lar results, with correlations around 0.8 between intronic and exonic 
changes of the same tissue, shown for brain in Figure 5c and for all 
tissues in Figure 5d. These findings indicate that as a general rule, 
most differences in RNA levels between cell types are accounted for 
by transcription. This is in agreement with earlier studies showing 
that gene expression levels can be accurately predicted using only 
chromatin modifications36,43 or in addition based on transcription-
factor binding data44,45.

For tissue-specific miRNAs, expression is anti-correlated with 
mRNA expression (corresponding to ∆exon) of the cognate target  
genes46,47. As EISA allows direct quantification of the post-
transcriptional differences across tissues, this association should be 
even more pronounced when replacing ∆exon by ∆exon – ∆intron. 
Using a linear regression approach46,48 (Online Methods), we statisti-
cally assessed for all miRNAs if their targeting patterns were predictive 
for ∆exon – ∆intron, ∆exon or ∆intron in each tissue. A directional 
P-value (Fig. 5e) quantifies both the significance (absolute value)  

and the direction (sign) of the prediction. A negative sign indicates 
that the targets of a particular miRNA had values below the average 
(∆exon – ∆intron, ∆exon or ∆intron), which is expected only in tissues 
where the miRNA is highly expressed and therefore represses its target 
genes. We selected five miRNAs known to be specifically expressed 
in brain, heart/skeletal muscle or liver47. For ∆exon – ∆intron, the 
strongest signal is always found in the tissue with high expression of 
the respective miRNA (Fig. 5e, black bars, tissue with high expression 
indicated by arrowhead). Although qualitatively similar results can be 
obtained through prediction of ∆exon (dark gray bars) in accordance 
with previous findings47, ∆exon – ∆intron leads to higher significance 
for four of the five miRNAs, and equal significance for the remaining 
one. Notably, ∆intron contains no information about the activity of 
miRNAs (light gray bars) despite its high correlation to ∆exon. In 
summary, these findings show that EISA can detect small post-tran-
scriptional differences even in systems that are mostly characterized 
by transcriptional changes.

Technical and statistical considerations
Several technical and statistical issues should to be taken into con-
sideration when performing an EISA. First, the number of genes that 
can be quantified above a minimal number of reads strongly depends 
on the size of a data set, for example measured by the total number 
of uniquely mapped reads. To estimate these requirements, we  
randomly subsampled reads from each of the 17 data sets used in 
this study (Supplementary Table 1), separately for reads mapping 
to exons and to introns (Fig. 6a,b). All samples contain more exonic 
than intronic reads resulting in a larger number of quantifiable genes 
on the exonic level. For example, ten million reads mapping to gene 
bodies allowed quantification of about 11,000 genes based on exonic 
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reads (Fig. 6a), and around 7,000 based on intronic reads (Fig. 6b). It 
has been reported that compared to total RNA-seq, polyA-RNA-seq 
results in only a small fraction of intronic reads24,49. Indeed, we find 
on average a higher fraction of intronic reads in total RNA data sets 
(24.4%) compared to polyA RNA data sets (14.8%). However, in the 
17 data sets analyzed here there is only a weak association between the 
RNA isolation protocol and the fraction of intronic reads. It is likely 
that additional experimental factors influence the relative amounts of 
intronic and exonic reads that may differ even between experiments 
of the same protocol type. As a result, also polyA-RNA-seq data sets 
are amenable to EISA as illustrated by the many polyA data sets used 
in this study (Supplementary Table 1).

A second important issue that arises in an EISA is the evaluation  
of the significance of ∆intron or ∆exon – ∆intron values from rep-
licate experiments to confidentially call transcriptional or post- 
transcriptional changes, respectively. The significance of ∆intron can be  
assessed in an identical manner to as it is commonly done for changes 
on the exonic level, using statistical methods such as for example, 
edgeR21, DESeq19 or voom as part of the limma software20. Testing for 
significance of ∆exon – ∆intron is more complicated as it requires the 
integration of exonic and intronic counts into the same statistical model. 
Absolute exonic and intronic read counts within one sample have very 
different distributions and show only moderate correlation (data not 
shown), which may be due to varying transcript and intron lengths 
across genes as well as differences in the capture efficiency and/or the 
half-lives of the introns. To account for this aspect, we modeled ∆exon 
– ∆intron in the framework of a generalized linear model in edgeR by 
introducing a count type (“exon” or “intron”) as an additional factor  
in addition to the experimental conditions. To calculate the statistical 

significance for ∆exon – ∆intron, we incorporated an interaction term 
between these factors (Supplementary Script 2). The significance of 
this interaction is calculated based on a likelihood ratio test between 
the full model and a reduced model containing all experimental fac-
tors except the interaction term. We show an example application 
of this approach to the mouse differentiation system from ESCs to 
terminal neurons (Figs. 3a and 6c), where two replicate experiments 
per condition are available. As expected, for genes that changed sig-
nificantly according to their false discovery rate (FDR < 0.05), there 
was a large distance from the diagonal (Fig. 6c). Given the before- 
mentioned contrasting properties of intronic and exonic read counts, it 
is, however, unclear whether the statistical approach presented here is 
optimal. Future work may lead to a more comprehensive and detailed 
statistical description and thus potentially more accurate results.

The sequencing requirements for detecting significant post- 
transcriptional changes depend on multiple factors, such as the fraction  
of intronic reads, the number and quality of replicate experiments and 
the magnitude of post-transcriptional changes in a particular system. 
We addressed the sequencing requirements in the previously analyzed 
ESCs-terminal neurons system for which replicate data is available. We 
subsampled the reads for each replicate separately and determined the 
number of significantly changing genes (FDR < 0.05) with a minimal 
fold-change of two and four in ∆exon – ∆intron. While the number of 
significantly changing genes clearly increases with sequencing depth, a 
slow saturation is apparent, in particularly at a cut-off of four (Fig. 6d). 
While the relatively low sequencing depth of 8 million reads does not 
allow us to determine the continuation of the curve at higher depth, 
the analysis shows that several hundreds of significantly changing 
genes can already be detected with only four million reads.
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DISCUSSION 
We show that application of EISA to standard RNA-seq data allows 
simultaneous quantification of changes in steady-state and nascent 
RNA levels across different experimental conditions (Fig. 2). Post-
transcriptional effects can be measured by the difference in exonic 
and intronic changes across varying conditions, as demonstrated by 
its correlation to changes in mRNA half-lives during differentiation 
(Fig. 3b,c), improved identification of miRNA targets in the presence 
of secondary effects (Fig. 4) and improved inference of tissue-specific 
miRNA expression (Fig. 5e). As a result, RNA-seq experiments can 
be used to determine whether expression changes observed in a gene 
knockout, knock-down or overexpression experiment are caused by 
transcriptional or post-transcriptional mechanisms, providing infor-
mation about the potential function of the gene under study (e.g., 
miR-1 in Fig. 4a). More generally, EISA can be used in any type of 
comparative study, for example, mutant versus wild type, treated ver-
sus untreated or diseased versus healthy, to gain insights into the regu-
latory mechanism responsible for the observed expression changes.

EISA should be used with caution in cases where proteins involved 
in the global regulation of the mRNA life cycle are perturbed. 
Extensive changes in transcript structures, caused, for example, by 
the perturbation of a splicing factor, can lead to misclassification of 
exonic and intronic reads. Similarly, perturbations of factors involved 
in the degradation of introns could lead to changes on the intronic 
level and would be wrongly interpreted as transcriptional by EISA.

It is known that long noncoding RNAs (lncRNAs) or enhancer 
RNAs (eRNAs) contribute to changes in intronic read counts9–11,50. 
Although this may affect specific genes of interest, EISA can be used 
on a genome-wide scale, probably because the intronic signal is accu-
mulated over large genomic regions and may therefore not be strongly 
affected by localized events. The high correlation between intronic 
and exonic changes across many cell types (Fig. 5b,d) could only be 
explained by lncRNAs or eRNAs if their expression patterns gen-
erally and accurately followed the expression pattern of their host 
genes, which seems unlikely. In fact, although expression of exonic 
antisense lncRNAs is correlated with host gene expression, this cor-
relation is much weaker between host gene expression and both sense  
and antisense intronic lncRNAs11. Additionally, lncRNAs and 
eRNAs are expressed at much lower levels than mRNAs9,11,50 and 
are unlikely to produce a high number of intronic reads. Similarly, 

changes in splicing patterns are unlikely to explain the observed cor-
related intronic and exonic changes, as this would imply very strong  
constraints on splicing for the majority of genes. At the single gene 
level, however, alternative splicing or noncoding RNAs may lead 
to a misinterpretation of the intronic signal. This can potentially 
be mitigated by using the RNA-seq data to detect novel exons or 
small regions of high intronic read density, possibly reflecting non-
coding RNAs. The resulting improvement in genome annotation is 
likely to translate to more accurate estimates of transcriptional and  
post-transcriptional changes.

EISA places genes into different zones on the ∆intron versus ∆exon 
plot based on a simple comparison of intronic and exonic changes 
(Fig. 6e). We have shown here that these zones separate genes that 
are under transcriptional control from genes that are regulated pre-
dominantly on a post-transcriptional level. This analysis can be 
performed with any RNA-seq data set, with no special experimental  
requirements or additional cost. Therefore, EISA increases the value 
of many existing and future RNA-seq data sets and provides a tool 
to study transcriptional and post-transcriptional contributions to 
expression changes.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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ONLINE METHODS
Processing of RNA-seq data. The RNA-seq data sets used in this study 
(Supplementary Table 1) were mapped in an annotation-free manner 
to the genome assemblies hg18 for human and mm9 for mouse using the 
R/Bioconductor package QuasR (version 1.2.2). QuasR51 ties together 
all the tools necessary to obtain expression tables within R starting from 
the raw reads. It includes the aligners bowtie52 and SpliceMap53. Bowtie 
was used to align all the samples with short reads (≤50), considering only 
uniquely mapping reads. The command used to perform the alignments was 
‘qAlign(“samples.txt”,”BSgenome.Hsapiens.UCSC.hg18”)’ for human and 
‘qAlign(“samples.txt”,”BSgenome.Mmusculus.UCSC.mm9”)’ for mouse, which 
internally instructs bowtie to create alignments with parameters “–m1 –-best 
–-strata –-phredNN-quals.” For samples with longer reads, spliced alignments 
were performed with SpliceMap, using the command ‘qAlign(“samples.txt”, 
“BSgenome.Hsapiens.UCSC.hg18”, splicedAlignment = TRUE)’ for human and  
‘qAlign(“samples.txt”, “BSgenome.Mmusculus.UCSC.mm9”, splicedAlignment =  
TRUE)’ for mouse, which internally instructs SpliceMap to perform spliced 
alignments with default parameters. Colorspace alignments for data sets from 
the SOLiD platform (GSE39978, SRA025656) were performed directly with 
bowtie using the parameters ‘-m 2–best–strata -C -S’. The miRNA transfec-
tion data sets (GSE21992, GSE52530) required the removal of the 3′ adaptor 
TCGTATGCCGTCTTCTGCTTG. This was performed using the function 
‘preprocessReads’ from QuasR with default parameters. In the case of RNA-seq 
experiments with paired-end data only the first read was used.

Quantification of exonic and intronic levels. Using RefSeq mRNA coor-
dinates from UCSC (genome.ucsc.edu, downloaded in October 2013) and 
considering only transcripts that map to a unique position in the genome, we 
quantified both the number of reads that started within any annotated exon 
of a gene (exonic) as well as the number of reads within the gene body that 
did not overlap any of the annotated exons (intronic). Exon coordinates were 
extended by ten basepairs on both sides to ensure that exonic reads close to the 
exon junctions were not counted as intronic reads. In GRO-seq experiments, 
we quantified the number of reads that started within the full gene body. 
Counting was performed using the function qCount from the Bioconductor 
package QuasR51 considering read orientation in stranded experiments. For 
each data set, normalization for library size was performed by dividing each 
sample by the total number of reads and multiplying by the average library 
size. Notably, this normalization was performed separately for exonic and 
intronic reads as the exonic to intronic ratio can vary from data set to data 
set and from sample to sample. To minimize differences in expression across 
samples caused by genes with a small number of counts, log2 expression levels 
(exonic and intronic) were calculated after adding a pseudo-count of 8. Based 
on these expression levels we selected the genes with sufficient counts for 
downstream analysis by requiring an average log2 expression level of at least 
5 (i.e., 24 counts) over all included samples and separately for exonic and 
intronic counts. Overlapping genes were not considered for analysis, as it is 
difficult to unambiguously assign the intronic reads to the respective genes. 
For stranded RNA-seq experiments, only genes on the same strand were con-
sidered as overlapping genes whereas for nonstranded experiments, genes on 
opposite strands were also considered as overlapping. Lists of nonoverlap-
ping genes for human and mouse and for stranded and nonstranded analyses 
are available in Supplementary Data 1. ∆exon (∆intron) was defined as the 
difference in log2 exonic (intronic) expression levels between the respective 
experimental conditions.

Analysis of circadian dynamics data sets. For each time point, log2 fold-
changes of gene expression were calculated relative to the average over all time 
points. Phases and amplitudes of genes were then fitted separately for each type 
of RNA (nascent RNA, exonic total RNA and intronic total RNA) as follows 
(Supplementary Script 1). For each individual gene we fitted a cosine curve of 
the form y = C·cos(ωt + ϕ), where C is the amplitude and ϕ the phase, and the 
frequency ω = 2π/24 h (known period of 24 h). Since C·cos(ωt + ϕ) = A·cos(ωt) 
– B·sin(ωt) with A = C·cos(ϕ) and B = C·sin(ϕ), we performed the fit using a 
linear regression using cos(ωt) and −sin(ωt) as regressors. The following lines 
of R code were used to perform the fit and calculate C and ϕ:

coeffs < - lm(y ~ cbind(cos(w*t),-sin(w*t)))$coefficients;
C < - sqrt(coeffs[2]^2 + coeffs[3]^2);
ϕ < - atan2(coeffs[3],coeffs[2]);

Oscillating genes were identified as genes with an amplitude in nascent RNA 
from data set GSE36872 greater than 0.35 (n = 799). For heatmap display, 
z-score expression values were calculated using scaled counts (normalized 
for library size) by subtracting the mean and dividing by the s.d. over time 
points for each gene.

RNA-seq analysis of ENCODE cell lines. For the ENCODE cell lines, separate 
RNA-seq data sets for polyA+ and polyA− fractions are available. We com-
bined both fractions for our analysis. To account for the different sequencing 
depths in the two fractions, for each sample separately, we normalized the 
total number of reads that map to gene bodies to the minimum total number 
and then combined the reads of the two fractions into a single fraction. 
Subsequently these samples were treated like every other data set for further 
normalization.

MiRNA expression inference in different tissues. Using predicted (con-
served) miRNA target sites in 3′UTRs from TargetScan 6.2 (http://www.
targetscan.org/) for 153 conserved miRNA families, we performed a linear 
regression for each tissue using the number of predicted miRNA target sites 
for each miRNA as regressors and different types of relative expression levels as 
the response. To control for possible technical confounders, we also included 
the AT content of the 3′UTRs as an additional predictor. In total the regression 
contained 154 variables for 10,968 data points and was performed for each 
tissue three times separately using ∆exon – ∆intron, ∆exon or ∆intron as the 
response variable.

Subsampling of RNA-seq read counts. To estimate the number of quantifiable 
genes as a function of sequencing depth, subsampling of RNA-seq read counts 
was implemented by sampling n elements from a multinomial distribution 
with k possible outcomes (k equals twice the number of genes; each gene rep-
resented separately for exons and introns) and probabilities corresponding to 
the observed fraction of reads per gene and read type (exons or introns). For 
each data set, values for n were selected between 1 and the sum of exonic and 
intronic counts in all samples of the data set. For each value of n, the sampling 
was repeated 20 times, and the average number of quantifiable genes as defined 
above was recorded separately for introns and exons.

To determine the sequencing requirements for detecting significant post-
transcriptional changes in the ESC-terminal neurons differentiation system, 
read subsampling was implement by modeling the read counts with a mul-
tivariate hypergeometric distribution with k possible outcomes, with k cor-
responding to the number of genes. The total fraction of subsampled reads f 
was varied from 5% to 100% (in steps of 5%) of the total of number of reads in 
each replicate data set and for each read type (exonic or intronic). For a given 
fraction f, the resulting count table was mean-normalized, filtered for genes 
with a sufficient number of reads (mean log2 counts ≥ 5 for exons and introns 
separately) and the number of significantly changing genes in ∆exon – ∆intron 
was determined using edgeR21 (see Technical and statistical considerations 
and Supplementary Script 2). For each f, subsampling was performed 20 
times and the final number of significantly changing genes determined as the 
average over all repetitions.

Additional online material. Lists of nonoverlapping human and mouse genes, 
raw and normalized count tables for the main figures and R code example are 
also available online from: http://www.fmi.ch/groups/gbioinfo/EISA/EISA.
html.

51.	Gaidatzis, D., Lerch, A., Hahne, F. & Stadler, M.B. QuasR: quantification and 
annotation of short reads in R. Bioinformatics 31, 1130–1132 (2015).

52.	Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient 
alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 
(2009).

53.	Au, K.F., Jiang, H., Lin, L., Xing, Y. & Wong, W.H. Detection of splice junctions 
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(2010).
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Erratum: Analysis of intronic and exonic reads in RnA-seq data  
characterizes transcriptional and post-transcriptional regulation
Dimos Gaidatzis, Lukas Burger, Maria Florescu & Michael B Stadler
Nat. Biotechnol.; doi:10.1038/nbt.3269; corrected online 8 July 2015

In the version of this article initially published online, several errors appeared in the HTML version. In the section “EISA recovers the role of tran-
scription during neurogenesis,” the expression  “(t1/2 = 1/α)” should have read “(t1/2 ~ 1/α)” in the sentence “mRNA half-life, on the other hand, is 
inversely proportional to the degradation rate (t1/2 = 1/α).” In the Online Methods, “Analysis of circadian dynamics data sets,” the symbol “<-” was 
given as “≤” in two cases and as “≤<” in one case; the formulas “coeffs ≤ lm(y ~ cbind(cos(w*t),-sin(w*t)))$coefficients”; “C ≤< sqrt(coeffs[2]^2 + 
coeffs[3]^2)”; “ϕ ≤ atan2(coeffs[3],coeffs[2])” should have been “coeffs <- lm(y ~ cbind(cos(w*t),-sin(w*t)))$coefficients”; “C <- sqrt(coeffs[2]^2 
+ coeffs[3]^2)”; “ϕ <- atan2(coeffs[3],coeffs[2]).” In addition, the corresponding authors are Dimos Gaidatzis, Lukas Burger and Michael Stadler, 
rather than Dimos Gaidatzis, Lukas Burger and Maria Florescu.The errors have been corrected in HTML version of this article.
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