Abstract

Hepatitis C virus (HCV) infection is a leading cause of liver cirrhosis and cancer1. Cell entry of HCV2 and other pathogens3,4,5 is mediated by tight junction (TJ) proteins, but successful therapeutic targeting of TJ proteins has not been reported yet. Using a human liver–chimeric mouse model6, we show that a monoclonal antibody specific for the TJ protein claudin-1 (ref. 7) eliminates chronic HCV infection without detectable toxicity. This antibody inhibits HCV entry, cell-cell transmission and virus-induced signaling events. Antibody treatment reduces the number of HCV-infected hepatocytes in vivo, highlighting the need for de novo infection by means of host entry factors to maintain chronic infection. In summary, we demonstrate that an antibody targeting a virus receptor can cure chronic viral infection and uncover TJ proteins as targets for antiviral therapy.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Global control of hepatitis C: where challenge meets opportunity. Nat. Med. 19, 850–858 (2013).

  2. 2.

    et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801–805 (2007).

  3. 3.

    et al. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc. Natl. Acad. Sci. USA 98, 15191–15196 (2001).

  4. 4.

    et al. Shigella targets epithelial tricellular junctions and uses a noncanonical clathrin-dependent endocytic pathway to spread between cells. Cell Host Microbe 11, 325–336 (2012).

  5. 5.

    , & The interaction between claudin-1 and dengue viral prM/M protein for its entry. Virology 446, 303–313 (2013).

  6. 6.

    et al. Hepatitis C virus replication in mice with chimeric human livers. Nat. Med. 7, 927–933 (2001).

  7. 7.

    et al. Monoclonal anti-claudin 1 antibodies prevent hepatitis C virus infection of primary human hepatocytes. Gastroenterology 139, 953–964 (2010).

  8. 8.

    et al. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat. Med. 14, 25–27 (2008).

  9. 9.

    et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat. Med. 17, 589–595 (2011).

  10. 10.

    et al. A human monoclonal antibody targeting scavenger receptor class B type I precludes hepatitis C virus infection and viral spread in vitro and in vivo. Hepatology 55, 364–372 (2012).

  11. 11.

    et al. Combination therapies with NS5A, NS3 and NS5B inhibitors on different genotypes of hepatitis C virus in human hepatocyte chimeric mice. Gut 62, 1055–1061 (2013).

  12. 12.

    , , & Heterogeneous claudin-1 expression in human liver. Hepatology 57, 854–855 (2013).

  13. 13.

    et al. Activated macrophages promote hepatitis C virus entry in a tumor necrosis factor-dependent manner. Hepatology 59, 1320–1330 (2014).

  14. 14.

    et al. Challenge pools of hepatitis C virus genotypes 1–6 prototype strains: replication fitness and pathogenicity in chimpanzees and human liver-chimeric mouse models. J. Infect. Dis. 201, 1381–1389 (2010).

  15. 15.

    et al. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc. Natl. Acad. Sci. USA 103, 7408–7413 (2006).

  16. 16.

    et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11, 791–796 (2005).

  17. 17.

    et al. Mutations that alter use of hepatitis C virus cell entry factors mediate escape from neutralizing antibodies. Gastroenterology 143, 223–233 (2012).

  18. 18.

    et al. Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2–CD81-claudin-1 associations. Hepatology 51, 1144–1157 (2010).

  19. 19.

    & (eds.). Handbook of Therapeutic Antibodies (Wiley-Blackwell, 2014).

  20. 20.

    et al. Claudin association with CD81 defines hepatitis C virus entry. J. Biol. Chem. 285, 21092–21102 (2010).

  21. 21.

    et al. Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 32, 4873–4882 (2013).

  22. 22.

    et al. CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes. J. Virol. 82, 8316–8329 (2008).

  23. 23.

    et al. Hepatitis C virus induces epidermal growth factor receptor activation via CD81 binding for viral internalization and entry. J. Virol. 86, 10935–10949 (2012).

  24. 24.

    et al. HRas signal transduction promotes hepatitis C virus cell entry by triggering assembly of the host tetraspanin receptor complex. Cell Host Microbe 13, 302–313 (2013).

  25. 25.

    et al. MAP-kinase regulated cytosolic phospholipase A2 activity is essential for production of infectious hepatitis C virus particles. PLoS Pathog. 8, e1002829 (2012).

  26. 26.

    et al. Simultaneous detection of hepatitis C virus and interferon stimulated gene expression in infected human liver. Hepatology 59, 2121–2130 (2014).

  27. 27.

    et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282, 103–107 (1998).

  28. 28.

    et al. Hepatitis C virus infection sensitizes human hepatocytes to TRAIL-induced apoptosis in a caspase 9-dependent manner. J. Immunol. 181, 4926–4935 (2008).

  29. 29.

    et al. Isolate-dependent use of Claudins for cell entry by hepatitis C virus. Hepatology 59, 24–34 (2014).

  30. 30.

    et al. Functional analysis of claudin-6 and claudin-9 as entry factors for hepatitis C virus infection of human hepatocytes by using monoclonal antibodies. J. Virol. 87, 10405–10410 (2013).

  31. 31.

    et al. Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology 47, 418–427 (2008).

  32. 32.

    , , , & The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells. J. Virol. 81, 588–598 (2007).

  33. 33.

    et al. CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J. Virol. 82, 5007–5020 (2008).

  34. 34.

    et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 58, 196–201 (2009).

  35. 35.

    et al. The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology 57, 492–504 (2013).

  36. 36.

    et al. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat. Biotechnol. 26, 335–341 (2008).

  37. 37.

    et al. Interferon-gamma-stimulated genes, but not USP18, are expressed in livers of patients with acute hepatitis C. Gastroenterology 143, 777–786 (2012).

Download references

Acknowledgements

This work was supported by the European Union (ERC-2008-AdG-233130-HEPCENT, ERC-2010-StG-260767-ncRNAVIR, INTERREG-IV-Rhin Supérieur-FEDER-Hepato-Regio-Net 2009 and 2012), ANRS (ANRS 2009/183, 2009/136, 2011/132, 2012/239, 2013/108), ANR (Laboratoires d'excellence ANR-10-LABX-0028_HEPSYS and ANR-10-LABX-36 netRNA), Fondation ARC pour la recherche (NanoISI and TheraHCC IHUARC IHU201301187), Institut Hospitalo-Universitaire (IHU) Strasbourg, the Wilhelm Sander Foundation, Région Alsace, Institut National du Cancer, the Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Strasbourg, the Ghent University (GOA 01G01712) and the Research Foundation—Flanders (projects 1500910N and G052112N). We are grateful to S. Ito (Harvard Medical School) for electron microscopy studies, F.-L. Cosset (Inserm U1111, ENS Lyon, France) and J. Ball (University of Nottingham, Nottingham, UK) for retroviral vectors for HCVpp production, F. Chisari (The Scripps Research Institute, La Jolla, CA, USA) for the gift of Huh7.5.1 cells, A. Patel (MRC Virology Unit, Glasgow, UK) for E2-specific mAb AP33 and Huh7.5-GFP cells, S. Foung (Stanford Blood Center, Palo Alto, CA, USA) for E2-specific mAb CHB-23 and C.M. Rice and M. Evans (Rockefeller University and Mount Sinai School of Medicine, New York) for providing human and mouse CLDN1 expression constructs as well as Huh7.5 cells. We acknowledge S. Durand, L. Heydmann, E. Soulier, J. Barths, N. Brignon, S. Pernot (Inserm U1110, Strasbourg), O. Wendling and N. Messadeq (Institut Clinique de la Souris - ICS, Illkirch), C. Valencia (PCBIS, Illkirch), S. Kallis (University of Heidelberg, Germany) for technical work, F. Grunert and J. Thompson (Aldevron, Freiburg) for helpful discussions, H. Jacob and M.F. Champy (ICS, Illkirch) for histopathological, hematological and biochemical analyzes, P. Bachellier (Strasbourg University Hospitals) for providing liver resections for isolation of primary human hepatocytes, the Laboratoire Schuh—groupement Bio67, Strasbourg and the Plateau Technique de Microbiologie, Laboratoire de Virologie (S. Fafi-Kremer and F. Stoll-Keller), University Hospital Strasbourg for performing viral load analyses, and the IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) microarray and sequencing platform, member of the France Génomique program, for the sequencing of our libraries. Part of the animal experiments was carried out within the small animal exploration facility Cardiex (Nantes), which is supported by the GIS-IBiSA (Groupement d'Intérêt Scientifique – Infrastructure en Biologie Santé et Agronomie) program.

Author information

Author notes

    • Fei Xiao
    •  & Joachim Lupberger

    These authors contributed equally to this work.

    • Eric Robinet
    •  & Thomas F Baumert

    These authors jointly supervised this work.

Affiliations

  1. Institut National de la Santé et de la Recherche Médicale, Unité 1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.

    • Laurent Mailly
    • , Fei Xiao
    • , Joachim Lupberger
    • , Céline Leboeuf
    • , Isabel Fofana
    • , Christine Thumann
    • , Simonetta Bandiera
    • , Patrick Pessaux
    • , Mirjam B Zeisel
    • , Eric Robinet
    •  & Thomas F Baumert
  2. Université de Strasbourg, Strasbourg, France.

    • Laurent Mailly
    • , Fei Xiao
    • , Joachim Lupberger
    • , Céline Leboeuf
    • , Isabel Fofana
    • , Christine Thumann
    • , Simonetta Bandiera
    • , Erika Girardi
    • , Béatrice Chane-Woon-Ming
    • , Patrick Pessaux
    • , Pascal Villa
    • , Sébastien Pfeffer
    • , Mirjam B Zeisel
    • , Eric Robinet
    •  & Thomas F Baumert
  3. Hepatitis C Research Group, Institute for Biomedical Research, University of Birmingham, Birmingham, UK.

    • Garrick K Wilson
    • , Christopher Davis
    • , Helen J Harris
    • , Christopher J Mee
    • , Nicola Fletcher
    •  & Jane A McKeating
  4. Institut National de la Santé et de la Recherche Médicale, Unité 913, Nantes, France.

    • Philippe Aubert
    •  & Michel Neunlist
  5. Université de Nantes, Nantes, France.

    • Philippe Aubert
    •  & Michel Neunlist
  6. Institut des Maladies de l'Appareil Digestif, CHU Nantes, Hôpital Hôtel-Dieu, Nantes, France.

    • Philippe Aubert
    •  & Michel Neunlist
  7. Department of Biomedicine, Hepatology Laboratory, University of Basel, Basel, Switzerland.

    • François H T Duong
    • , Diego Calabrese
    •  & Markus H Heim
  8. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

    • Marc Lütgehetmann
    • , Tassilo Volz
    •  & Maura Dandri
  9. Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France.

    • Erika Girardi
    • , Béatrice Chane-Woon-Ming
    •  & Sébastien Pfeffer
  10. Electron Microscopy Facility, Harvard Medical School, Boston, Massachusetts, USA.

    • Maria Ericsson
  11. Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.

    • Ralf Bartenschlager
  12. German Centre for Infection Research, Heidelberg University, Heidelberg, Germany.

    • Ralf Bartenschlager
  13. Pôle Hépato-Digestif, Institut Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.

    • Patrick Pessaux
    •  & Thomas F Baumert
  14. Center for Vaccinology, Ghent University, Ghent, Belgium.

    • Koen Vercauteren
    •  & Philip Meuleman
  15. Plateforme de Chimie Biologique Intégrative de Strasbourg, Medalis, UMS 3286 CNRS-UdS & FMTS, Illkirch, France.

    • Pascal Villa
  16. Institute for Medical Informatics and Biometry, Medical Faculty, Technische Universität Dresden, Dresden, Germany.

    • Lars Kaderali

Authors

  1. Search for Laurent Mailly in:

  2. Search for Fei Xiao in:

  3. Search for Joachim Lupberger in:

  4. Search for Garrick K Wilson in:

  5. Search for Philippe Aubert in:

  6. Search for François H T Duong in:

  7. Search for Diego Calabrese in:

  8. Search for Céline Leboeuf in:

  9. Search for Isabel Fofana in:

  10. Search for Christine Thumann in:

  11. Search for Simonetta Bandiera in:

  12. Search for Marc Lütgehetmann in:

  13. Search for Tassilo Volz in:

  14. Search for Christopher Davis in:

  15. Search for Helen J Harris in:

  16. Search for Christopher J Mee in:

  17. Search for Erika Girardi in:

  18. Search for Béatrice Chane-Woon-Ming in:

  19. Search for Maria Ericsson in:

  20. Search for Nicola Fletcher in:

  21. Search for Ralf Bartenschlager in:

  22. Search for Patrick Pessaux in:

  23. Search for Koen Vercauteren in:

  24. Search for Philip Meuleman in:

  25. Search for Pascal Villa in:

  26. Search for Lars Kaderali in:

  27. Search for Sébastien Pfeffer in:

  28. Search for Markus H Heim in:

  29. Search for Michel Neunlist in:

  30. Search for Mirjam B Zeisel in:

  31. Search for Maura Dandri in:

  32. Search for Jane A McKeating in:

  33. Search for Eric Robinet in:

  34. Search for Thomas F Baumert in:

Contributions

T.F.B. initiated and supervised the study. T.F.B., E.R., J.A.M., M.N., M.B.Z., M.H.H., R.B., S.P., P.M., P.V. and J.L. designed experiments and analyzed data. L.M., P.A., K.V. and E.R. performed in vivo experiments and analyzed data. L.M., F.X., J.L., S.B., G.K.W., P.A., F.H.T.D., D.C., C.L., M.E., I.F., C.D., H.J.H., C.J.M., C.T., E.G., B.C.-W.-M., N.F., M.B.Z. and L.K. performed ex vivo and in vitro experiments and analyzed data. R.B., P.P. and P.M. provided key reagents. M.D., M.L. and T.V. produced chimeric uPA-SCID mice. L.M., J.L., S.B., M.B.Z., J.A.M., E.R. and T.F.B. wrote the manuscript.

Competing interests

Inserm, the University of Strasbourg and Genovac/Aldevron Freiburg have filed a patent application on monoclonal anti-claudin 1 antibodies for the inhibition of hepatitis C virus infection (US Patent # 8,518,408; WO2010034812; PCT/EP2009/062449). T.F.B. has served as a scientific advisor for Gilead, Biotest and Vironexx.

Corresponding author

Correspondence to Thomas F Baumert.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–15 and Supplementary Tables 1–5

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nbt.3179

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing