Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing


Current drug-safety assays for hepatotoxicity rely on biomarkers with low predictive power. The production of radical species, specifically reactive oxygen species (ROS) and reactive nitrogen species (RNS), has been proposed as an early unifying event linking the bioactivation of drugs to hepatotoxicity and as a more direct and mechanistic indicator of hepatotoxic potential. Here we present a nanosensor for rapid, real-time in vivo imaging of drug-induced ROS and RNS for direct evaluation of acute hepatotoxicity. By combining fluorescence resonance energy transfer (FRET) and chemiluminescence resonance energy transfer (CRET), our semiconducting polymer–based nanosensor simultaneously and differentially detects RNS and ROS using two optically independent channels. We imaged drug-induced hepatotoxicity and its remediation longitudinally in mice after systemic challenge with acetaminophen or isoniazid. We detected dose-dependent ROS and RNS activity in the liver within minutes of drug challenge, which preceded histological changes, protein nitration and DNA double-strand-break induction.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Design of CF-SPN for detection of ROS and RNS.
Figure 2: Spectral characterization, specificity and sensitivity of CF-SPN in vitro.
Figure 3: Real-time in vivo imaging of hepatotoxicity after APAP administration to mice.
Figure 4: Longitudinal, in vivo monitoring of the remediation of APAP-induced hepatotoxicity with enzyme inhibitors and antioxidant scavengers.
Figure 5: Real-time in vivo imaging of dose-dependent hepatotoxicity in mice after INH administration.
Figure 6: The ability of CF-SPN to differentially and simultaneously detect H2O2 and ONOO provides mechanistic insights into parent drug bioactivation.


  1. 1

    Nasr, A., Lauterio, T.J. & Davis, M.W. Unapproved drugs in the United States and the Food and Drug Administration. Adv. Ther. 28, 842–856 (2011).

    Article  Google Scholar 

  2. 2

    Budnitz, D.S. et al. National surveillance of emergency department visits for outpatient adverse drug events. J. Am. Med. Assoc. 296, 1858–1866 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Sakatis, M.Z. et al. Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds. Chem. Res. Toxicol. 25, 2067–2082 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Srivastava, A. et al. Role of reactive metabolites in drug-induced hepatotoxicity. Handb. Exp. Pharmacol. 196, 165–194 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Dimasi, J.A. Risks in new drug development: approval success rates for investigational drugs. Clin. Pharmacol. Ther. 69, 297–307 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–715 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Tengowski, M.W. & Kotyk, J.J. Risk identification and management: MRI as a research tool in toxicology studies of new chemical entities. Prog. Drug Res. 62, 257–278 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Kramer, J.A., Sagartz, J.E. & Morris, D.L. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat. Rev. Drug Discov. 6, 636–649 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Holt, M. & Ju, C. Drug-induced liver injury. Handb. Exp. Pharmacol. 196, 3–27 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Walsh, J.S. & Miwa, G.T. Bioactivation of drugs: risk and drug design. Annu. Rev. Pharmacol. Toxicol. 51, 145–167 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Antoine, D.J., Williams, D.P. & Park, B.K. Understanding the role of reactive metabolites in drug-induced hepatotoxicity: state of the science. Expert Opin. Drug Metab. Toxicol. 4, 1415–1427 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Tang, W. & Lu, A.Y. Metabolic bioactivation and drug-related adverse effects: current status and future directions from a pharmaceutical research perspective. Drug Metab. Rev. 42, 225–249 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Willmann, J.K., van Bruggen, N., Dinkelborg, L.M. & Gambhir, S.S. Molecular imaging in drug development. Nat. Rev. Drug Discov. 7, 591–607 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Pessayre, D., Mansouri, A., Berson, A. & Fromenty, B. Mitochondrial involvement in drug-induced liver injury. Handb. Exp. Pharmacol. 196, 311–365 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Russmann, S., Kullak-Ublick, G.A. & Grattagliano, I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr. Med. Chem. 16, 3041–3053 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Xiong, L., Shuhendler, A.J. & Rao, J. Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat. Commun. 3, 1193 (2012).

    Article  Google Scholar 

  17. 17

    Pu, K., Shuhendler, A.J. & Rao, J. Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species. Angew. Chem. Int. Edn. Engl. 52, 10325–10329 (2013).

    CAS  Article  Google Scholar 

  18. 18

    Lee, D. et al. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater. 6, 765–769 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Oushiki, D. et al. Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. J. Am. Chem. Soc. 132, 2795–2801 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Hu, Y., Haynes, M.T., Wang, Y., Liu, F. & Huang, L. A highly efficient synthetic vector: nonhydrodynamic delivery of DNA to hepatocyte nuclei in vivo. ACS Nano 7, 5376–5384 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Szabo, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662–680 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Smith, A.M., Mancini, M.C. & Nie, S. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Shuhendler, A.J. et al. Hybrid quantum dot-fatty ester stealth nanoparticles: toward clinically relevant in vivo optical imaging of deep tissue. ACS Nano 5, 1958–1966 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Pu, K. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 10.1038/nnano.2013.302 (26 January 2014).

  25. 25

    Herd, R.M., Dover, J.S. & Arndt, K.A. Basic laser principles. Dermatol. Clin. 15, 355–372 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Mourant, J.R., Fuselier, T., Boyer, J., Johnson, T.M. & Bigio, I.J. Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl. Opt. 36, 949–957 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Jones, C.F. & Grainger, D.W. In vitro assessments of nanomaterial toxicity. Adv. Drug Deliv. Rev. 61, 438–456 (2009).

    CAS  Article  Google Scholar 

  28. 28

    Maynard, A.D., Warheit, D.B. & Philbert, M.A. The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol. Sci. 120 (suppl. 1), S109–S129 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Hinson, J.A., Roberts, D.W. & James, L.P. Mechanisms of acetaminophen-induced liver necrosis. Handb. Exp. Pharmacol. 196, 369–405 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Nakagawa, H. et al. Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology 135, 1311–1321 (2008).

    CAS  Article  Google Scholar 

  31. 31

    McGill, M.R. & Jaeschke, H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm. Res. 30, 2174–2187 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Gujral, J.S., Knight, T.R., Farhood, A., Bajt, M.L. & Jaeschke, H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol. Sci. 67, 322–328 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Liu, W.F. et al. Real-time in vivo detection of biomaterial-induced reactive oxygen species. Biomaterials 32, 1796–1801 (2011).

    Article  Google Scholar 

  34. 34

    James, L.P., McCullough, S.S., Lamps, L.W. & Hinson, J.A. Effect of N-acetylcysteine on acetaminophen toxicity in mice: relationship to reactive nitrogen and cytokine formation. Toxicol. Sci. 75, 458–467 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Jackson, T.E., Lilly, P.D., Recio, L., Schlosser, P.M. & Medinsky, M.A. Inhibition of cytochrome P450 2E1 decreases, but does not eliminate, genotoxicity mediated by 1,3-butadiene. Toxicol. Sci. 55, 266–273 (2000).

    CAS  Article  Google Scholar 

  36. 36

    Saito, C., Zwingmann, C. & Jaeschke, H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 51, 246–254 (2010).

    CAS  Article  Google Scholar 

  37. 37

    Saukkonen, J.J., Powell, K. & Jereb, J.A. Monitoring for tuberculosis drug hepatotoxicity: moving from opinion to evidence. Am. J. Respir. Crit. Care Med. 185, 598–599 (2012).

    Article  Google Scholar 

  38. 38

    Metushi, I.G., Nakagawa, T. & Uetrecht, J. Direct oxidation and covalent binding of isoniazid to rodent liver and human hepatic microsomes: humans are more like mice than rats. Chem. Res. Toxicol. 25, 2567–2576 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Metushi, I.G., Cai, P., Zhu, X., Nakagawa, T. & Uetrecht, J.P. A fresh look at the mechanism of isoniazid-induced hepatotoxicity. Clin. Pharmacol. Ther. 89, 911–914 (2011).

    CAS  Article  Google Scholar 

  40. 40

    Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497–500 (2007).

    CAS  Article  Google Scholar 

  41. 41

    Sokolov, A.N., Tee, B.C., Bettinger, C.J., Tok, J.B. & Bao, Z. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc. Chem. Res. 45, 361–371 (2012).

    CAS  Article  Google Scholar 

  42. 42

    Wu, C. & Chiu, D.T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Edn. Engl. 52, 3086–3109 (2013).

    CAS  Article  Google Scholar 

  43. 43

    Guimard, N.K., Sessler, J.L. & Schmidt, C.E. Towards a biocompatible, biodegradable copolymer incorporating electroactive oligothiophene units. Macromolecules 42, 502–511 (2009).

    CAS  Article  Google Scholar 

  44. 44

    Zhang, N., Francis, K.P., Prakash, A. & Ansaldi, D. Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. Nat. Med. 19, 500–505 (2013).

    CAS  Article  Google Scholar 

  45. 45

    Park, B.K., Kitteringham, N.R., Maggs, J.L., Pirmohamed, M. & Williams, D.P. The role of metabolic activation in drug-induced hepatotoxicity. Annu. Rev. Pharmacol. Toxicol. 45, 177–202 (2005).

    CAS  Article  Google Scholar 

  46. 46

    Cover, C. et al. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J. Pharmacol. Exp. Ther. 315, 879–887 (2005).

    CAS  Article  Google Scholar 

  47. 47

    McGill, M.R. et al. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: dose-response, mechanisms, and clinical implications. Toxicol. Appl. Pharmacol. 269, 240–249 (2013).

    CAS  Article  Google Scholar 

  48. 48

    Ghafourifar, P. & Cadenas, E. Mitochondrial nitric oxide synthase. Trends Pharmacol. Sci. 26, 190–195 (2005).

    CAS  Article  Google Scholar 

  49. 49

    Pacher, P., Beckman, J.S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

    CAS  Article  Google Scholar 

  50. 50

    Chowdhury, A. et al. Mitochondrial oxidative stress and permeability transition in isoniazid and rifampicin induced liver injury in mice. J. Hepatol. 45, 117–126 (2006).

    CAS  Article  Google Scholar 

  51. 51

    Li, F. et al. Human PXR modulates hepatotoxicity associated with rifampicin and isoniazid co-therapy. Nat. Med. 19, 418–420 (2013).

    CAS  Article  Google Scholar 

  52. 52

    Lauterburg, B.H., Smith, C.V., Todd, E.L. & Mitchell, J.R. Pharmacokinetics of the toxic hydrazino metabolites formed from isoniazid in humans. J. Pharmacol. Exp. Ther. 235, 566–570 (1985).

    CAS  PubMed  Google Scholar 

  53. 53

    Nathan, C. & Cunningham-Bussel, A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 13, 349–361 (2013).

    CAS  Article  Google Scholar 

  54. 54

    Li, J.O.W., Li, W., Jiang, Z.G. & Ghanbari, H.A. Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci. 14, 24438–24475 (2013).

    Article  Google Scholar 

  55. 55

    Costa, A., Scholer-Dahirel, A. & Mechta-Grigoriou, F. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin. Cancer Biol. 10.1016/j.semcancer.2013.12.007 (7 January 2014).

Download references


This work was supported by the US National Institutes of Health National Cancer Institute (NCI) grants R01CA135294, R01DK099800-06A1, R21CA138353A2, the Stanford University NCI CCNE-T grant (U54CA151459) and In Vivo Cellular and Molecular Imaging Centers grant (P50CA114747). A.J.S. acknowledges Susan G. Komen For The Cure for fellowship support. We acknowledge the use of the SCi3 Core Facility and the Neuroscience Microscopy Service Facility at Stanford University, P. Chu for her expertise in preparation of histology samples, E.J. McWalter for assistance with MatLab script, and S. Machtaler for assistance with tissue preparation and imaging by confocal microscopy.

Author information




A.J.S., K.P. and J.R. conceived of the nanosensor design, and A.J.S., K.P., J.P.U. and J.R. designed the experiments. L.C. synthesized the galactose moiety. K.P. synthesized PS-g-PEG-Gal and CF-SPN, performed in vitro characterization of CF-SPN and data analysis. A.J.S. performed in vivo studies, analyzed in vivo data, and acquired histology images. A.J.S., K.P., J.P.U. and J.R. discussed the results and co-wrote the manuscript.

Corresponding author

Correspondence to Jianghong Rao.

Ethics declarations

Competing interests

Stanford University has filed a provisional patent application (serial number 61/841,958) to protect part of the technology described in the study.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1215 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shuhendler, A., Pu, K., Cui, L. et al. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol 32, 373–380 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing