Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mesenchymal stem cells: immune evasive, not immune privileged

Abstract

The diverse immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) may be exploited for treatment of a multitude of inflammatory conditions. MSCs have long been reported to be hypoimmunogenic or 'immune privileged'; this property is thought to enable MSC transplantation across major histocompatibility barriers and the creation of off-the-shelf therapies consisting of MSCs grown in culture. However, recent studies describing generation of antibodies against and immune rejection of allogeneic donor MSCs suggest that MSCs may not actually be immune privileged. Nevertheless, whether rejection of donor MSCs influences the efficacy of allogeneic MSC therapies is not known, and no definitive clinical advantage of autologous MSCs over allogeneic MSCs has been demonstrated to date. Although MSCs may exert therapeutic function through a brief 'hit and run' mechanism, protecting MSCs from immune detection and prolonging their persistence in vivo may improve clinical outcomes and prevent patient sensitization toward donor antigens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The rise of MSC therapy.
Figure 2: Immune suppression enables immune evasion.
Figure 3: Strategies to facilitate MSC immune evasion.

Similar content being viewed by others

References

  1. Friedenstein, A.J., Piatetzky-Shapiro, I.I. & Petrakova, K.V. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 16, 381–390 (1966).

    CAS  PubMed  Google Scholar 

  2. Friedenstein, A., Gorskaja, J. & Kulagina, N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4, 267–274 (1976).

    CAS  PubMed  Google Scholar 

  3. Friedenstein, A.J., Chailakhyan, R.K. & Gerasimov, U.V. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet. 20, 263–272 (1987).

    CAS  PubMed  Google Scholar 

  4. Caplan, A.I. Mesenchymal stem cells. J. Orthop. Res. 9, 641–650 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. James, A.W. et al. An abundant perivascular source of stem cells for bone tissue engineering. Stem Cells Transl. Med. 1, 673–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Crisan, M., Corselli, M., Chen, W.C.W. & Péault, B. Perivascular cells for regenerative medicine. J. Cell. Mol. Med. 16, 2851–2860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chan, C.K.F. et al. Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. Proc. Natl. Acad. Sci. USA 110, 12643–12648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10, 259–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Copley, M.R., Beer, P.A. & Eaves, C.J. Hematopoietic stem cell heterogeneity takes center stage. Cell Stem Cell 10, 690–697 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Verovskaya, E. et al. Heterogeneity of young and aged murine hematopoietic stem cells revealed by quantitative clonal analysis using cellular barcoding. Blood 122, 523–532 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Bernardo, M.E. & Fibbe, W.E. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392–402 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Nauta, A.J. & Fibbe, W.E. Immunomodulatory properties of mesenchymal stromal cells. Blood 110, 3499–3506 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. François, M., Romieu-Mourez, R., Li, M. & Galipeau, J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol. Ther. 20, 187–195 (2012).

    Article  PubMed  CAS  Google Scholar 

  15. Prockop, D.J. Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells 31, 2042–2046 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Bianco, P . et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat. Med. 19, 35–42 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen, H. Stricter standards sought to curb stem-cell confusion. Nature 499, 389 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Keating, A. Mesenchymal stromal cells: new directions. Cell Stem Cell 10, 709–716 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Caplan, A.I. & Correa, D. The MSC: an injury drugstore. Cell Stem Cell 9, 11–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Phinney, D.G. et al. MSCs: science and trials. Nat. Med. 19, 812 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Fibbe, W.E., Dazzi, F. & LeBlanc, K. MSCs: science and trials. Nat. Med. 19, 812–813 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Pittenger, M.F. MSCs: science and trials. Nat. Med. 19, 811 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Ankrum, J. & Karp, J. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol. Med. 16, 203–209 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haynesworth, S.E., Baber, M.A. & Caplan, A.I. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J. Cell. Physiol. 166, 585–592 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Devine, S.M. & Hoffman, R. Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr. Opin. Hematol. 7, 358–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Lazarus, H., Curtin, P., Devine, S., McCarthy, P. & Holland, K. Role of mesenchymal stem cells (MSC) in allogeneic transplantation: early phase I clinical results. Blood 96, 392a (2000).

    Google Scholar 

  27. Klyushnenkova, E., Mosca, J.D., McIntosh, K.R. & Thiede, M.A. Human mesenchymal stem cells suppress allogeneic T cell responses in vitro: implications for allogeneic transplantation. Blood 92, 2652 (1998).

    Google Scholar 

  28. Tse, W.T., Beyer, W., Pendleton, J.D. & D'Andrea, A. Bone marrow derived mesenchymal stem cells suppress T cell activation without inducing allogeneic anergy. Blood 96, 1034a (2000).

    Google Scholar 

  29. Tse, W.T., Pendleton, J.D., Beyer, W.M., Egalka, M.C. & Guinan, E.C. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75, 389–397 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Klyushnenkova, E. et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J. Biomed. Sci. 12, 47–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Bartholomew, A. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp. Hematol. 30, 42–48 (2002).

    Article  PubMed  Google Scholar 

  32. Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S.E. & Ringden, O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol. 57, 11–20 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Di Nicola, M. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99, 3838–3843 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Krampera, M. et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101, 3722–3729 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Liechty, K.W. et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 6, 1282–1286 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Ito, T. et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 89, 1438–1445 (2010).

    Article  PubMed  Google Scholar 

  37. Casiraghi, F. et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J. Immunol. 181, 3933–3946 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Waterman, R.S., Tomchuck, S.L., Henkle, S.L. & Betancourt, A.M. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS ONE 5, e10088 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Ranganath, S.H., Levy, O., Inamdar, M.S. & Karp, J.M. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cells 10, 244–258 (2012).

    Article  CAS  Google Scholar 

  40. Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E. & Ringdén, O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp. Hematol. 31, 890–896 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Hemeda, H. et al. Interferon-γ and tumor necrosis factor-α differentially affect cytokine expression and migration properties of mesenchymal stem cells. Stem Cells Dev. 19, 693–706 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Mastri, M. et al. Activation of Toll-like receptor 3 (TLR3) amplifies mesenchymal stem cell trophic factors and enhances therapeutic potency. Am. J. Physiol. Cell Physiol. 303, C1021–C1033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Delarosa, O., Dalemans, W. & Lombardo, E. Toll-like receptors as modulators of mesenchymal stem cells. Front. Immunol. 3, 182 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shi, Y. et al. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 33, 136–143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Le Blanc, K. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363, 1439–1441 (2004).

    Article  PubMed  Google Scholar 

  46. von Bahr, L. et al. Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol. Blood Marrow Transplant. 18, 557–564 (2012).

    Article  PubMed  Google Scholar 

  47. Lalu, M.M. et al. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS ONE 7, e47559 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Penn, M.S. et al. Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: phase I clinical study. Circ. Res. 110, 304–311 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, H. South Korea's stem cell approval. Nat. Biotechnol. 29, 857 (2011).

    Article  CAS  Google Scholar 

  50. Cyranoski, D. Canada approves stem cell product. Nat. Biotechnol. 30, 571 (2012).

    Article  CAS  Google Scholar 

  51. Kurtzberg, J. et al. Allogeneic human mesenchymal stem cell therapy (Remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol. Blood Marrow Transplant. 10.1016/j.bbmt.2013.11.001 (2013).

  52. Le Blanc, K. et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371, 1579–1586 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Bernardo, M.E. et al. Co-infusion of ex vivo-expanded, parental MSCs prevents life-threatening acute GVHD, but does not reduce the risk of graft failure in pediatric patients undergoing allogeneic umbilical cord blood transplantation. Bone Marrow Transplant. 46, 200–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Ball, L.M. et al. Multiple infusions of mesenchymal stromal cells induce sustained remission in children with steroid-refractory, grade III–IV acute graft-versus-host disease. Br. J. Haematol. 163, 501–509 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Riordan, N.H. et al. Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. J. Transl. Med. 7, 29 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Toma, C., Wagner, W.R., Bowry, S., Schwartz, A. & Villanueva, F. Fate of culture-expanded mesenchymal stem cells in the microvasculature: in vivo observations of cell kinetics. Circ. Res. 104, 398–402 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, R.H. et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5, 54–63 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kidd, S. et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27, 2614–2623 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. von Bahr, L. et al. Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation. Stem Cells 30, 1575–1578 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Muschler, G.F., Nakamoto, C. & Griffith, L.G. Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg. Am. 86-A, 1541–1558 (2004).

    Article  Google Scholar 

  61. Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S. & Galipeau, J. Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106, 4057–4065 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Campeau, P.M. et al. Mesenchymal stromal cells engineered to express erythropoietin induce anti-erythropoietin antibodies and anemia in allorecipients. Mol. Ther. 17, 369–372 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Zangi, L. et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 27, 2865–2874 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Nauta, A.J. et al. Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108, 2114–2120 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Badillo, A.T., Beggs, K.J., Javazon, E.H., Tebbets, J.C. & Flake, A.W. Murine bone marrow stromal progenitor cells elicit an in vivo cellular and humoral alloimmune response. Biol. Blood Marrow Transplant. 13, 412–422 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Griffin, M.D. et al. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far? Immunol. Cell Biol. 91, 40–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Camp, D.M., Loeffler, D.A., Farrah, D.M., Borneman, J.N. & LeWitt, P.A. Cellular immune response to intrastriatally implanted allogeneic bone marrow stromal cells in a rat model of Parkinson's disease. J. Neuroinflammation 6, 17 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. Schu, S. et al. Immunogenicity of allogeneic mesenchymal stem cells. J. Cell. Mol. Med. 16, 2094–2103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Beggs, K.J. et al. Immunologic consequences of multiple, high-dose administration of allogeneic mesenchymal stem cells to baboons. Cell Transplant. 15, 711–721 (2006).

    Article  PubMed  Google Scholar 

  70. Isakova, I.A., Dufour, J., Lanclos, C., Bruhn, J. & Phinney, D.G. Cell-dose-dependent increases in circulating levels of immune effector cells in rhesus macaques following intracranial injection of allogeneic MSCs. Exp. Hematol. 38, 957–967 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Poncelet, A.J., Vercruysse, J., Saliez, A. & Gianello, P. Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation 83, 783–790 (2007).

    Article  PubMed  Google Scholar 

  72. Grinnemo, K.H. et al. Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. J. Thorac. Cardiovasc. Surg. 127, 1293–1300 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Xia, Z. et al. Macrophagic response to human mesenchymal stem cell and poly(epsilon-caprolactone) implantation in nonobese diabetic/severe combined immunodeficient mice. J. Biomed. Mater. Res. A 71, 538–548 (2004).

    Article  PubMed  CAS  Google Scholar 

  74. Moll, G. et al. Are therapeutic human mesenchymal stromal cells compatible with human blood? Stem Cells 30, 1565–1574 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Moll, G. et al. Mesenchymal stromal cells engage complement and complement receptor bearing innate effector cells to modulate immune responses. PLoS ONE 6, e21703 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, Y. & Lin, F. Mesenchymal stem cells are injured by complement after their contact with serum. Blood 120, 3436–3443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Le Blanc, K. & Mougiakakos, D. Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 12, 383–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Chan, J.L. et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 107, 4817–4824 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stagg, J., Pommey, S., Eliopoulos, N. & Galipeau, J. Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 107, 2570–2577 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. François, M. et al. Mesenchymal stromal cells cross-present soluble exogenous antigens as part of their antigen-presenting cell properties. Blood 114, 2632–2638 (2009).

    Article  PubMed  Google Scholar 

  81. Dembinski, J.L. et al. Tumor stroma engraftment of gene-modified mesenchymal stem cells as anti-tumor therapy against ovarian cancer. Cytotherapy 15, 20–32 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ren, G. et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 27, 1954–1962 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Voll, R.E. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Leonard, D.A., Cetrulo, C.L. Jr., McGrouther, D.A. & Sachs, D.H. Induction of tolerance of vascularized composite allografts. Transplantation 95, 403–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Zanotti, L. et al. Encapsulated mesenchymal stem cells for in vivo immunomodulation. Leukemia 27, 500–503 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Maccario, R. et al. Human mesenchymal stem cells and cyclosporin a exert a synergistic suppressive effect on in vitro activation of alloantigen-specific cytotoxic lymphocytes. Biol. Blood Marrow Transplant. 11, 1031–1032 (2005).

    Article  PubMed  Google Scholar 

  87. Buron, F. et al. Human mesenchymal stem cells and immunosuppressive drug interactions in allogeneic responses: an in vitro study using human cells. Transplant. Proc. 41, 3347–3352 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Ge, W. et al. Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. Am. J. Transplant. 9, 1760–1772 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Luznik, L. et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood 115, 3224–3230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang, W.H., Yan, Y., De Boer, B., Bishop, G.A. & House, A.K. A short course of cyclosporine immunosuppression inhibits rejection but not tolerance of rat liver allografts. Transplantation 75, 368–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Huang, W.H. et al. A short course of mycophenolate immunosuppression inhibits rejection, but not tolerance, of rat liver allografts in association with inhibition of interleukin-4 and alloantibody responses. Transplantation 76, 1159–1165 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Forslöw, U. et al. Treatment with mesenchymal stromal cells is a risk factor for pneumonia-related death after allogeneic hematopoietic stem cell transplantation. Eur. J. Haematol. 89, 220–227 (2012).

    Article  PubMed  CAS  Google Scholar 

  93. de la Garza-Rodea, A.S. et al. Exploitation of herpesvirus immune evasion strategies to modify the immunogenicity of human mesenchymal stem cell transplants. PLoS ONE 6, e14493 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Soland, M.A. et al. Modulation of human mesenchymal stem cell immunogenicity through forced expression of human cytomegalovirus US proteins. PLoS ONE 7, e36163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Levy, O. et al. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood 122, e23–e32 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ko, I.K., Kean, T.J. & Dennis, J.E. Targeting mesenchymal stem cells to activated endothelial cells. Biomaterials 30, 3702–3710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sarkar, D. et al. Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjug. Chem. 19, 2105–2109 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Sarkar, D. et al. Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting. Biomaterials 31, 5266–5274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sarkar, D., Ankrum, J., Teo, G.S.L., Carman, C.V. & Karp, J.M. Cellular and extracellular programming of cell fate through engineered intracrine-, paracrine-, and endocrine-like mechanisms. Biomaterials 32, 3053–3061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ankrum, J. et al. Engineering cells with intracellular agent-loaded microparticles to control cell phenotype. Nat. Protoc. 9, 233–245 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brandenberger, R. et al. Cell therapy bioprocessing. Bioprocess Int. 9, 30–37 (2011).

    Google Scholar 

  102. Melief, S.M., Zwaginga, J.J., Fibbe, W.E. & Roelofs, H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl. Med 2, 455–463 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bravery, C.A. . et al. Potency assay development for cellular therapy products: an ISCT review of the requirements and experiences in the industry. Cytotherapy 15, 9–19 (2013).

    Article  PubMed  Google Scholar 

  104. Hare, J.M. et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. J. Am. Med. Assoc. 308, 2369–2379 (2012).

    Article  CAS  Google Scholar 

  105. Jung, Y., Bauer, G. & Nolta, J.A. Concise review: induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 30, 42–47 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Krampera, M. et al. Immunological characterization of multipotent mesenchymal stromal cells-The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 15, 1054–1061 (2013).

    Article  PubMed  Google Scholar 

  107. Zhukareva, V., Obrocka, M., Houle, J.D., Fischer, I. & Neuhuber, B. Secretion profile of human bone marrow stromal cells: donor variability and response to inflammatory stimuli. Cytokine 50, 317–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Strioga, M., Viswanathan, S., Darinskas, A., Slaby, O. & Michalek, J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 21, 2724–2752 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Zhao, W. et al. Cell-surface sensors for real-time probing of cellular environments. Nat. Nanotechnol. 6, 524–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant HL095722, Department of Defense grant no. W81XWH-13-1-0305 and by a Movember–Prostate Cancer Foundation Challenge Award to J.M.K. J.A.A. was supported by the Hugh Hampton Young Memorial Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey M Karp.

Ethics declarations

Competing interests

J.M.K. is a paid consultant of Sanofi and Stempeutics in the area of regenerative medicine and mesenchymal stem cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ankrum, J., Ong, J. & Karp, J. Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32, 252–260 (2014). https://doi.org/10.1038/nbt.2816

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2816

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research