Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface

Abstract

Robust generation of IgG bispecific antibodies has been a long-standing challenge. Existing methods require extensive engineering of each individual antibody, discovery of common light chains, or complex and laborious biochemical processing. Here we combine computational and rational design approaches with experimental structural validation to generate antibody heavy and light chains with orthogonal Fab interfaces. Parental monoclonal antibodies incorporating these interfaces, when simultaneously co-expressed, assemble into bispecific IgG with improved heavy chain–light chain pairing. Bispecific IgGs generated with this approach exhibit pharmacokinetic and other desirable properties of native IgG, but bind target antigens monovalently. As such, these bispecific reagents may be useful in many biotechnological applications.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Design of an orthogonal CH1-CL interface.
Figure 2: Schematic diagrams, models and X-ray structures of designs VRD1 and VRD2.
Figure 3: Demonstration of the specificity afforded by the heavy chain–light chain interface designed mutants and the dual-binding activity of the resulting BsAb molecules.
Figure 4: Function of IgG BsAbs.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Chames, P. & Baty, D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? mAbs 1, 539–547 (2009).

    Article  Google Scholar 

  2. Demarest, S.J. & Glaser, S.M. Antibody therapeutics, antibody engineering, and the merits of protein stability. Curr. Opin. Drug Discov. Devel. 11, 675–687 (2008).

    CAS  PubMed  Google Scholar 

  3. Lum, L.G. & Thakur, A. Targeting T cells with bispecific antibodies for cancer therapy. BioDrugs 25, 365–379 (2011).

    CAS  Article  Google Scholar 

  4. Jin, H. et al. MetMAb, the one-armed 5D5 anti-c-Met antibody, inhibits orthotopic pancreatic tumor growth and improves survival. Cancer Res. 68, 4360–4368 (2008).

    CAS  Article  Google Scholar 

  5. Strop, P. et al. Generating bispecific human IgG1 and IgG2 antibodies from any antibody pair. J. Mol. Biol. 420, 204–219 (2012).

    CAS  Article  Google Scholar 

  6. Labrijn, A.F. et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc. Natl. Acad. Sci. USA 110, 5145–5150 (2013).

    CAS  Article  Google Scholar 

  7. Spiess, C. et al. Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies. Nat. Biotechnol. 31, 753–758 (2013).

    CAS  Article  Google Scholar 

  8. Bostrom, J. et al. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science 323, 1610–1614 (2009).

    CAS  Article  Google Scholar 

  9. Ridgway, J.B., Presta, L.G. & Carter, P. 'Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 9, 617–621 (1996).

    CAS  Article  Google Scholar 

  10. Klein, C. et al. Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. mAbs 4, 653–663 (2012).

    Article  Google Scholar 

  11. Merchant, A.M. et al. An efficient route to human bispecific IgG. Nat. Biotechnol. 16, 677–681 (1998).

    CAS  Article  Google Scholar 

  12. Schaefer, W. et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc. Natl. Acad. Sci. USA 108, 11187–11192 (2011).

    CAS  Article  Google Scholar 

  13. Leaver-Fay, A., Jacak, R., Stranges, P.B. & Kuhlman, B. A generic program for multistate protein design. PLoS ONE 6, e20937 (2011).

    CAS  Article  Google Scholar 

  14. Havranek, J.J. & Harbury, P.B. Automated design of specificity in molecular recognition. Nat. Struct. Biol. 10, 45–52 (2003).

    CAS  Article  Google Scholar 

  15. Ashworth, J. et al. Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441, 656–659 (2006).

    CAS  Article  Google Scholar 

  16. Grigoryan, G., Reinke, A.W. & Keating, A.E. Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458, 859–864 (2009).

    CAS  Article  Google Scholar 

  17. Tan, P.H., Sandmaier, B.M. & Stayton, P.S. Contributions of a highly conserved VH/VL hydrogen bonding interaction to scFv folding stability and refolding efficiency. Biophys. J. 75, 1473–1482 (1998).

    CAS  Article  Google Scholar 

  18. Igawa, T. et al. VH/VL interface engineering to promote selective expression and inhibit conformational isomerization of thrombopoietin receptor agonist single-chain diabody. Protein Eng. Des. Sel. 23, 667–677 (2010).

    CAS  Article  Google Scholar 

  19. De Groot, A.S. & Martin, W. Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin. Immunol. 131, 189–201 (2009).

    CAS  Article  Google Scholar 

  20. Nahta, R., Hung, M.C. & Esteva, F.J. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res. 64, 2343–2346 (2004).

    CAS  Article  Google Scholar 

  21. Schmiedel, J., Blaukat, A., Li, S., Knochel, T. & Ferguson, K.M. Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell 13, 365–373 (2008).

    CAS  Article  Google Scholar 

  22. Ye, X. et al. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene 29, 5254–5264 (2010).

    CAS  Article  Google Scholar 

  23. Michaelson, J.S. et al. Anti-tumor activity of stability-engineered IgG-like bispecific antibodies targeting TRAIL-R2 and LTbetaR. mAbs 1, 128–141 (2009).

    Article  Google Scholar 

  24. Gunasekaran, K. et al. Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J. Biol. Chem. 285, 19637–19646 (2010).

    CAS  Article  Google Scholar 

  25. Garber, E. & Demarest, S.J. A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem. Biophys. Res. Commun. 355, 751–757 (2007).

    CAS  Article  Google Scholar 

  26. Scheer, J.M. et al. Reorienting the Fab domains of trastuzumab results in potent HER2 activators. PLoS ONE 7, e51817 (2012).

    CAS  Article  Google Scholar 

  27. Li, B. et al. Bispecific antibody to ErbB2 overcomes trastuzumab resistance through comprehensive blockade of ErbB2 heterodimerization. Cancer Res. 73, 6471–6483 (2013).

    CAS  Article  Google Scholar 

  28. Feige, M.J. et al. An unfolded CH1 domain controls the assembly and secretion of IgG antibodies. Mol. Cell 34, 569–579 (2009).

    CAS  Article  Google Scholar 

  29. Pejchal, R. et al. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334, 1097–1103 (2011).

    CAS  Article  Google Scholar 

  30. Lewis, S.M. & Kuhlman, B.A. Anchored design of protein-protein interfaces. PLoS ONE 6, e20872 (2011).

    CAS  Article  Google Scholar 

  31. McLellan, J.S. et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343 (2011).

    CAS  Article  Google Scholar 

  32. Gray, J.J. et al. Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J. Mol. Biol. 331, 281–299 (2003).

    CAS  Article  Google Scholar 

  33. Fleishman, S.J. et al. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS ONE 6, e20161 (2011).

    CAS  Article  Google Scholar 

  34. Cooper, S. et al. Predicting protein structures with a multiplayer online game. Nature 466, 756–760 (2010).

    CAS  Article  Google Scholar 

  35. Leaver-Fay, A. et al. Scientific benchmarks for guiding macromolecular energy function improvement. Methods Enzymol. 523, 109–143 (2013).

    CAS  Article  Google Scholar 

  36. Franklin, M.C. et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 5, 317–328 (2004).

    CAS  Article  Google Scholar 

  37. Casimiro, D.R., Wright, P.E. & Dyson, H.J. PCR-based gene synthesis and protein NMR spectroscopy. Structure 5, 1407–1412 (1997).

    CAS  Article  Google Scholar 

  38. Dong, J. et al. Stable IgG-like bispecific antibodies directed toward the type I insulin-like growth factor receptor demonstrate enhanced ligand blockade and anti-tumor activity. J. Biol. Chem. 286, 4703–4717 (2011).

    CAS  Article  Google Scholar 

  39. Doern, A. et al. Characterization of inhibitory anti-insulin-like growth factor receptor antibodies with different epitope specificity and ligand-blocking properties: implications for mechanism of action in vivo. J. Biol. Chem. 284, 10254–10267 (2009).

    CAS  Article  Google Scholar 

  40. Powell, H.R. The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 55, 1690–1695 (1999).

    CAS  Article  Google Scholar 

  41. Evans, P.R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D Biol. Crystallogr. 67, 282–292 (2011).

    CAS  Article  Google Scholar 

  42. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  Article  Google Scholar 

  43. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  Article  Google Scholar 

  44. McRee, D.E. XtalView/Xfit–A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Lilly Research Laboratories and the Lilly Research Award Program (LRAP). We thank J. Hannah and B. Gutierrez for their help with transient transfection, R. Yuan and D. He for assistance with protein purification, M. Batt and J. Fitchett for their training and up keep of the mass spectrometry facility at Lilly. B. Stranges provided suggestions for the computational docking protocol. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. Use of the Lilly Research Laboratories Collaborative Access Team (LRL-CAT) beamline at Sector 31 of the Advanced Photon Source was provided by Eli Lilly Company, which operates the facility. We thank S. Wasserman, S. Sojitra, J. Koss for data collection and operation of the beamline.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the concepts of the study. S.M.L. and B.K. performed the computational design, with advice from A.L.-F. B.K., A.K.C., S.M.T., S.M.L., S.J.D. and X.W. contributed to the rational designs. X.W., A.S., H.L.R., E.M.C., E.M.S., G.G., C.H., F.H., C.H.-E. and S.J.D. performed the experimental work. A.P. and S.A. performed the crystallization and structure determinations. B.K. and S.J.D. conceived the project. Writing of the paper was done in close collaboration by B.K., S.A., S.M.L. and S.J.D.

Corresponding authors

Correspondence to Brian Kuhlman or Stephen J Demarest.

Ethics declarations

Competing interests

X.W., A.P., A.S., F.H., E.M.S., C.H., A.K.C., S.T., S.A. and S.J.D. are employees of Eli Lilly

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–5 and Supplementary Protocols 1–3 (PDF 10445 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lewis, S., Wu, X., Pustilnik, A. et al. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat Biotechnol 32, 191–198 (2014). https://doi.org/10.1038/nbt.2797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2797

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing