Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice

A Retraction to this article was published on 17 February 2020

Abstract

Reprogramming of pancreatic exocrine cells into cells resembling beta cells may provide a strategy for treating diabetes. Here we show that transient administration of epidermal growth factor and ciliary neurotrophic factor to adult mice with chronic hyperglycemia efficiently stimulates the conversion of terminally differentiated acinar cells to beta-like cells. Newly generated beta-like cells are epigenetically reprogrammed, functional and glucose responsive, and they reinstate normal glycemic control for up to 248 d. The regenerative process depends on Stat3 signaling and requires a threshold number of Neurogenin 3 (Ngn3)-expressing acinar cells. In contrast to previous work demonstrating in vivo conversion of acinar cells to beta-like cells by viral delivery of exogenous transcription factors, our approach achieves acinar-to-beta-cell reprogramming through transient cytokine exposure rather than genetic modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chronic diabetes in mice is cured by transient release of EGF and CNTF.
Figure 2: Acinar cells are the primary source of new beta-like cells in diabetic mice treated with EGF and CNTF.
Figure 3: Re-activation of Ngn3 expression in the pancreas of ALX35d/CK mice.
Figure 4: NGN3 expression during generation of new beta-like cells.
Figure 5: Stat3 in responsiveness to EGF and CNTF and restoration of normoglycemia.

Similar content being viewed by others

References

  1. Brockes, J.P. & Kumar, A. Comparative aspects of animal regeneration. Annu. Rev. Cell Dev. Biol. 24, 525–549 (2008).

    CAS  PubMed  Google Scholar 

  2. Slack, J.M. Metaplasia and transdifferentiation: from pure biology to the clinic. Nat. Rev. Mol. Cell Biol. 8, 369–378 (2007).

    CAS  PubMed  Google Scholar 

  3. Baddour, J.A., Sousounis, K. & Tsonis, P.A. Organ repair and regeneration: an overview. Birth Defects Res. C Embryo Today 96, 1–29 (2012).

    CAS  PubMed  Google Scholar 

  4. Alvarado, A.S. & Tsonis, P.A. Bridging the regeneration gap: genetic insights from diverse animal models. Nat. Rev. Genet. 7, 873–884 (2006).

    CAS  Google Scholar 

  5. Dor, Y., Brown, J., Martinez, O.I. & Melton, D.A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    CAS  PubMed  Google Scholar 

  6. Nir, T., Melton, D.A. & Dor, Y. Recovery from diabetes in mice by beta cell regeneration. J. Clin. Invest. 117, 2553–2561 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu, X. et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132, 197–207 (2008).

    CAS  PubMed  Google Scholar 

  8. Solar, M. et al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev. Cell 17, 849–860 (2009).

    CAS  PubMed  Google Scholar 

  9. Kopinke, D. et al. Lineage tracing reveals the dynamic contribution of Hes1+ cells to the developing and adult pancreas. Development 138, 431–441 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kopinke, D. & Murtaugh, L.C. Exocrine-to-endocrine differentiation is detectable only prior to birth in the uninjured mouse pancreas. BMC Dev. Biol. 10, 38 (2010).

    PubMed  PubMed Central  Google Scholar 

  11. Furuyama, K. et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat. Genet. 43, 34–41 (2011).

    CAS  PubMed  Google Scholar 

  12. Kopp, J.L. et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development 138, 653–665 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Thorel, F. et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 464, 1149–1154 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rooman, I. & Bouwens, L. Combined gastrin and epidermal growth factor treatment induces islet regeneration and restores normoglycaemia in C57Bl6/J mice treated with alloxan. Diabetologia 47, 259–265 (2004).

    CAS  PubMed  Google Scholar 

  15. Desai, B.M. et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J. Clin. Invest. 117, 971–977 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D.A. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 455, 627–632 (2008).

    CAS  Google Scholar 

  17. Rooman, I. et al. Expression of the Notch signaling pathway and effect on exocrine cell proliferation in adult rat pancreas. Am. J. Pathol. 169, 1206–1214 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rooman, I., Heremans, Y., Heimberg, H. & Bouwens, L. Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro. Diabetologia 43, 907–914 (2000).

    CAS  PubMed  Google Scholar 

  19. Means, A.L. et al. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. Development 132, 3767–3776 (2005).

    CAS  PubMed  Google Scholar 

  20. Lardon, J. et al. Plasticity in the adult rat pancreas: transdifferentiation of exocrine to hepatocyte-like cells in primary culture. Hepatology 39, 1499–1507 (2004).

    CAS  PubMed  Google Scholar 

  21. Baeyens, L. et al. Notch signaling as gatekeeper of rat acinar-to-beta-cell conversion in vitro. Gastroenterology 136, 1750–1760 (2009).

    CAS  PubMed  Google Scholar 

  22. Baeyens, L. et al. Ngn3 expression during postnatal in vitro beta cell neogenesis induced by the JAK/STAT pathway. Cell Death Differ. 13, 1892–1899 (2006).

    CAS  PubMed  Google Scholar 

  23. Baeyens, L. et al. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48, 49–57 (2005).

    CAS  PubMed  Google Scholar 

  24. Minami, K. et al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 102, 15116–15121 (2005).

    CAS  PubMed  Google Scholar 

  25. Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res. 50, 537–546 (2001).

    CAS  PubMed  Google Scholar 

  26. Pan, F.C. et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 140, 751–764 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mellitzer, G. et al. Pancreatic islet progenitor cells in Neurogenin 3-yellow fluorescent protein knock-add-on mice. Mol. Endocrinol. 18, 2765–2776 (2004).

    CAS  PubMed  Google Scholar 

  28. Miettinen, P., Ormio, P., Hakonen, E., Banerjee, M. & Otonkoski, T. EGF receptor in pancreatic beta-cell mass regulation. Biochem. Soc. Trans. 36, 280–285 (2008).

    CAS  PubMed  Google Scholar 

  29. Miettinen, P.J. et al. Impaired migration and delayed differentiation of pancreatic islet cells in mice lacking EGF-receptors. Development 127, 2617–2627 (2000).

    CAS  PubMed  Google Scholar 

  30. Wadt, K.A. et al. Ciliary neurotrophic factor potentiates the beta-cell inhibitory effect of IL-1beta in rat pancreatic islets associated with increased nitric oxide synthesis and increased expression of inducible nitric oxide synthase. Diabetes 47, 1602–1608 (1998).

    CAS  PubMed  Google Scholar 

  31. Ip, N.Y. et al. CNTF and LIF act on neuronal cells via shared signaling pathways that involve the IL-6 signal transducing receptor component gp130. Cell 69, 1121–1132 (1992).

    CAS  PubMed  Google Scholar 

  32. Murakami, M. et al. IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260, 1808–1810 (1993).

    CAS  PubMed  Google Scholar 

  33. Lambert, P.D. et al. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc. Natl. Acad. Sci. USA 98, 4652–4657 (2001).

    CAS  PubMed  Google Scholar 

  34. Gloaguen, I. et al. Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc. Natl. Acad. Sci. USA 94, 6456–6461 (1997).

    CAS  PubMed  Google Scholar 

  35. Watt, M.J. et al. CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nat. Med. 12, 541–548 (2006).

    CAS  PubMed  Google Scholar 

  36. Sleeman, M.W. et al. Ciliary neurotrophic factor improves diabetic parameters and hepatic steatosis and increases basal metabolic rate in db/db mice. Proc. Natl. Acad. Sci. USA 100, 14297–14302 (2003).

    CAS  PubMed  Google Scholar 

  37. Rezende, L.F., Santos, G.J., Santos-Silva, J.C., Carneiro, E.M. & Boschero, A.C. Ciliary neurotrophic factor (CNTF) protects non-obese Swiss mice against type 2 diabetes by increasing beta cell mass and reducing insulin clearance. Diabetologia 55, 1495–1504 (2012).

    CAS  PubMed  Google Scholar 

  38. Rezende, L.F., Vieira, A.S., Negro, A., Langone, F. & Boschero, A.C. Ciliary neurotrophic factor (CNTF) signals through STAT3-SOCS3 pathway and protects rat pancreatic islets from cytokine-induced apoptosis. Cytokine 46, 65–71 (2009).

    CAS  PubMed  Google Scholar 

  39. Kamakura, S. et al. Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat. Cell Biol. 6, 547–554 (2004).

    CAS  PubMed  Google Scholar 

  40. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA 97, 1607–1611 (2000).

    CAS  PubMed  Google Scholar 

  41. Apelqvist, A. et al. Notch signalling controls pancreatic cell differentiation. Nature 400, 877–881 (1999).

    CAS  PubMed  Google Scholar 

  42. Wang, S. et al. Sustained Neurog3 expression in hormone-expressing islet cells is required for endocrine maturation and function. Proc. Natl. Acad. Sci. USA 106, 9715–9720 (2009).

    CAS  PubMed  Google Scholar 

  43. Yu, L. et al. BMP signaling induces digit regeneration in neonatal mice. Development 137, 551–559 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Han, M., Yang, X., Farrington, J.E. & Muneoka, K. Digit regeneration is regulated by Msx1 and BMP4 in fetal mice. Development 130, 5123–5132 (2003).

    CAS  PubMed  Google Scholar 

  45. Rinkevich, Y., Lindau, P., Ueno, H., Longaker, M.T. & Weissman, I.L. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476, 409–413 (2011).

    CAS  PubMed  Google Scholar 

  46. Lehoczky, J.A., Robert, B. & Tabin, C.J. Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proc. Natl. Acad. Sci. USA 108, 20609–20614 (2011).

    CAS  PubMed  Google Scholar 

  47. Odelberg, S.J., Kollhoff, A. & Keating, M.T. Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099–1109 (2000).

    CAS  PubMed  Google Scholar 

  48. Mellitzer, G. et al. IA1 is NGN3-dependent and essential for differentiation of the endocrine pancreas. EMBO J. 25, 1344–1352 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Schwitzgebel, V.M. et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127, 3533–3542 (2000).

    CAS  PubMed  Google Scholar 

  50. Wright, C.V., Schnegelsberg, P. & De Robertis, E.M. XlHbox 8: a novel Xenopus homeo protein restricted to a narrow band of endoderm. Development 105, 787–794 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks to V. Laurysens, A. Demarré, E. Quartier, J. De Jonge for technical advice and assistance, D. Pipeleers for logistic support and G. Bin for the Stat3lox/lox mouse strain. We thank J. Kornak for support on biostatistics. L.Ba. is a postdoctoral fellow of the Research Foundation – Flanders (FWO). Financial support was obtained from the Research Foundation – Flanders (FWO) (H.H., L.Ba. and L.Bo.), the Juvenile Diabetes Research Foundation (H.H. and L.Bo.), DON Foundation (www.sdon.nl) (H.H.), the European Foundation for the Study of Diabetes (EFSD) (L.Ba., P.B. and L.Bo.), the European Union Sixth (#LSHB-CT-2005-512145), Seventh (HEALTH-F5-2009-241883) Framework Program (H.H. and L.Bo.), Diabetesfonds Nederland (H.H.), NIH U19 DK 042502 and U01 DK 089570 (C.V.E.W. and F.C.P.), P30 DK063720 and U01 DK089541 (M.S.G.).

Author information

Authors and Affiliations

Authors

Contributions

Design: L.Ba., H.H.; execution of experiments: L.Ba., M.L., G.L., S.D.G., R.S., C.N., D.W.S.; analyses: L.Ba., M.L.; transgenic mouse strain generation: F.C.P., C.V.E.W., Y.D., D.A.S., G.G., J.F., G.G.; cell sorting: L.Ba., G.S.; interpretation of results: L.Ba., M.L., P.B., U.A., M.S.G., M.V.d.C., H.H.; writing: L.Ba., M.S.G., H.H.; critical reading: L.Ba., P.B., C.V.E.W., Y.D., J.F., G.G., L.Bo., M.V.d.C., M.S.G., H.H.; project management: M.S.G., L.Bo., H.H.

Corresponding authors

Correspondence to Luc Bouwens or Harry Heimberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 24854 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeyens, L., Lemper, M., Leuckx, G. et al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat Biotechnol 32, 76–83 (2014). https://doi.org/10.1038/nbt.2747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing