Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Directed evolution of genetic parts and circuits by compartmentalized partnered replication

Abstract

Most existing directed evolution methods, both in vivo1,2,3 and in vitro4,5,6, suffer from inadvertent selective pressures (i.e., altering organism fitness), resulting in the evolution of products with unintended or suboptimal function. To overcome these barriers, here we present compartmentalized partnered replication (CPR). In this approach, synthetic circuits are linked to the production of Taq DNA polymerase so that evolved circuits that most efficiently drive Taq DNA polymerase production are enriched by exponential amplification during a subsequent emulsion PCR step. We apply CPR to evolve a T7 RNA polymerase variant that recognizes an orthogonal promoter and to reengineer the tryptophanyl tRNA-synthetase:suppressor tRNA pair from Saccharomyces cerevisiae7 to efficiently and site-specifically incorporate an unnatural amino acid into proteins. In both cases, the CPR-evolved parts were more orthogonal and/or more active than variants evolved using other methods. CPR should be useful for evolving any genetic part or circuit that can be linked to Taq DNA polymerase expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General CPR concept.
Figure 2: CPR selection of an orthogonal T7 RNA polymerase.
Figure 3: CPR evolved 5-hydroxy-L-tryptophan–using tRNA synthetase and optimized tRNA.

Similar content being viewed by others

References

  1. Collins, C.H., Leadbetter, J.R. & Arnold, F.H. Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat. Biotechnol. 24, 708–712 (2006).

    Article  CAS  Google Scholar 

  2. Sinha, J., Reyes, S.J. & Gallivan, J.P. Reprogramming bacteria to seek and destroy an herbicide. Nat. Chem. Biol. 6, 464–470 (2010).

    Article  CAS  Google Scholar 

  3. Esvelt, K.M., Carlson, J.C. & Liu, D.R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  CAS  Google Scholar 

  4. Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  CAS  Google Scholar 

  5. Tawfik, D.S. & Griffiths, A.D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16, 652–656 (1998).

    Article  CAS  Google Scholar 

  6. Levy, M., Griswold, K.E. & Ellington, A.D. Direct selection of trans-acting ligase ribozymes by in vitro compartmentalization. RNA 11, 1555–1562 (2005).

    Article  CAS  Google Scholar 

  7. Hughes, R.A. & Ellington, A.D. Rational design of an orthogonal tryptophanyl nonsense suppressor tRNA. Nucleic Acids Res. 38, 6813–6830 (2010).

    Article  CAS  Google Scholar 

  8. Hughes, R.A., Miklos, A.E. & Ellington, A.D. Gene synthesis: methods and applications. Methods Enzymol. 498, 277–309 (2011).

    Article  CAS  Google Scholar 

  9. Gibson, D.G. Enzymatic assembly of overlapping DNA fragments. Methods Enzymol. 498, 349–361 (2011).

    Article  CAS  Google Scholar 

  10. Temme, K., Zhao, D. & Voigt, C.A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc. Natl. Acad. Sci. USA 109, 7085–7090 (2012).

    Article  Google Scholar 

  11. Tan, C., Marguet, P. & You, L. Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol. 5, 842–848 (2009).

    Article  CAS  Google Scholar 

  12. Wang, H.H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    Article  CAS  Google Scholar 

  13. Ghadessy, F.J., Ong, J.L. & Holliger, P. Directed evolution of polymerase function by compartmentalized self-replication. Proc. Natl. Acad. Sci. USA 98, 4552–4557 (2001).

    Article  CAS  Google Scholar 

  14. Ghadessy, F.J. & Holliger, P. Compartmentalized self-replication: a novel method for the directed evolution of polymerases and other enzymes. Methods Mol. Biol. 352, 237–248 (2007).

    CAS  PubMed  Google Scholar 

  15. Cheetham, G.M., Jeruzalmi, D. & Steitz, T.A. Structural basis for initiation of transcription from an RNA polymerase-promoter complex. Nature 399, 80–83 (1999).

    Article  CAS  Google Scholar 

  16. Raskin, C.A., Diaz, G.A. & McAllister, W.T. T7 RNA polymerase mutants with altered promoter specificities. Proc. Natl. Acad. Sci. USA 90, 3147–3151 (1993).

    Article  CAS  Google Scholar 

  17. Chelliserrykattil, J., Cai, G. & Ellington, A.D. A combined in vitro/in vivo selection for polymerases with novel promoter specificities. BMC Biotechnol. 1, 13 (2001).

    Article  CAS  Google Scholar 

  18. Temme, K., Hill, R., Segall-Shapiro, T.H., Moser, F. & Voigt, C.A. Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res. 40, 8773–8781 (2012).

    Article  CAS  Google Scholar 

  19. Zhou, M., Dong, X., Shen, N., Zhong, C. & Ding, J. Crystal structures of Saccharomyces cerevisiae tryptophanyl-tRNA synthetase: new insights into the mechanism of tryptophan activation and implications for anti-fungal drug design. Nucleic Acids Res. 38, 3399–3413 (2010).

    Article  CAS  Google Scholar 

  20. Shaw, J.B. et al. Complete protein characterization using top-down mass spectrometry and ultraviolet photodissociation. J. Am. Chem. Soc. 135, 12646–12651 (2013).

    Article  CAS  Google Scholar 

  21. Young, T.S., Ahmad, I., Yin, J.A. & Schultz, P.G. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361–374 (2010).

    Article  CAS  Google Scholar 

  22. Johnson, D.B.F. et al. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat. Chem. Biol. 7, 779–786 (2011).

    Article  CAS  Google Scholar 

  23. Breaker, R.R. & Joyce, G.F. Emergence of a replicating species from an in vitro RNA evolution reaction. Proc. Natl. Acad. Sci. USA 91, 6093–6097 (1994).

    Article  CAS  Google Scholar 

  24. Bull, J.J. & Pease, C.M. Why is the polymerase chain reaction resistant to in vitro evolution? J. Mol. Evol. 41, 1160–1164 (1995).

    Article  CAS  Google Scholar 

  25. Goldsmith, M. & Tawfik, D.S. Potential role of phenotypic mutations in the evolution of protein expression and stability. Proc. Natl. Acad. Sci. USA 106, 6197–6202 (2009).

    Article  CAS  Google Scholar 

  26. Dickinson, B.C., Leconte, A.M., Allen, B., Esvelt, K.M. & Liu, D.R. Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc. Natl. Acad. Sci. USA 110, 9007–9012 (2013).

    Article  CAS  Google Scholar 

  27. Paige, J.S., Wu, K.Y. & Jaffrey, S.R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

    Article  CAS  Google Scholar 

  28. Davidson, E.A., Meyer, A.J., Ellefson, J.W., Levy, M. & Ellington, A.D. An in vitro Autogene. ACS Synth. Biol. 1, 190–196 (2012).

    Article  CAS  Google Scholar 

  29. Fromant, M., Blanquet, S. & Plateau, P. Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal. Biochem. 224, 347–353 (1995).

    Article  CAS  Google Scholar 

  30. Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  Google Scholar 

  31. Kast, P. & Hennecke, H. Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. J. Mol. Biol. 222, 99–124 (1991).

    Article  CAS  Google Scholar 

  32. Thyer, R., Filipovska, A. & Rackham, O. Engineered rRNA enhances the efficiency of selenocysteine incorporation during translation. J. Am. Chem. Soc. 135, 2–5 (2013).

    Article  CAS  Google Scholar 

  33. Wang, L., Brock, A., Herberich, B. & Schultz, P.G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    Article  CAS  Google Scholar 

  34. Han, S.-W. et al. Tyrosine sulfation in a Gram-negative bacterium. Nat. Commun. 3, 1153 (2012).

    Article  Google Scholar 

  35. Chatterjee, A., Xiao, H., Yang, P.-Y., Soundararajan, G. & Schultz, P.G.A. Tryptophanyl-tRNA synthetase/tRNA pair for unnatural amino acid mutagenesis in E. coli. Angew Chem. Int. Ed. Engl. 52, 5106–5109 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Security Science and Engineering Faculty (FA9550–10-1-0169) the Welch Foundation (F–1654 to A.D.E. and F-1155 to J.S.B.), the National Science Foundation (CHE1012622 to J.S.B.), and the Defense Advanced Research Projects Agency (HR–0011-12-C-0066). J.S.B. thanks Thermo Fisher Scientific with helping on the modifications to the Orbitrap Elite mass spectrometer to allow UVPD.

Author information

Authors and Affiliations

Authors

Contributions

J.W.E. conceived of the selection scheme. A.J.M. carried out experiments with T7 RNA polymerase. J.W.E. carried out experiments on the ScWRS and tRNA with input from R.A.H. J.R.C. and J.S.B. performed mass spectrometry and analysis. J.W.E., A.J.M. and A.D.E. wrote the manuscript with contributions from R.A.H., J.R.C. and J.S.B.

Corresponding author

Correspondence to Andrew D Ellington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–21 and Supplementary Tables 1–4 (PDF 3840 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellefson, J., Meyer, A., Hughes, R. et al. Directed evolution of genetic parts and circuits by compartmentalized partnered replication. Nat Biotechnol 32, 97–101 (2014). https://doi.org/10.1038/nbt.2714

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2714

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing