Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering dynamic pathway regulation using stress-response promoters

Abstract

Heterologous pathways used in metabolic engineering may produce intermediates toxic to the cell. Dynamic control of pathway enzymes could prevent the accumulation of these metabolites, but such a strategy requires sensors, which are largely unknown, that can detect and respond to the metabolite. Here we applied whole-genome transcript arrays to identify promoters that respond to the accumulation of toxic intermediates, and then used these promoters to control accumulation of the intermediate and improve the final titers of a desired product. We apply this approach to regulate farnesyl pyrophosphate (FPP) production in the isoprenoid biosynthetic pathway in Escherichia coli. This strategy improved production of amorphadiene, the final product, by twofold over that from inducible or constitutive promoters, eliminated the need for expensive inducers, reduced acetate accumulation and improved growth. We extended this approach to another toxic intermediate to demonstrate the broad utility of identifying novel sensor-regulator systems for dynamic regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two modes of metabolic pathway regulation.
Figure 2: Systems biology analysis of FPP toxicity.
Figure 3: Production of amorphadiene using FPP-responsive promoters.
Figure 4: Fluorescence and amorphadiene production from inducible, constitutive and FPP-responsive promoters in EZ RDM with 1% glucose.
Figure 5: Targeted proteomic analysis of pathway enzymes (solid lines) and FPP accumulation profile (dashed lines) during the first 24 h of growth.

Similar content being viewed by others

References

  1. Zhang, K., Sawaya, M.R., Eisenberg, D.S. & Liao, J.C. Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl. Acad. Sci. USA 105, 20653–20658 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Nakamura, C.E. & Whited, G.M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454–459 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Martin, V., Pitera, D., Withers, S., Newman, J. & Keasling, J. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Basu, S., Mehreja, R., Thiberge, S., Chen, M.T. & Weiss, R. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl. Acad. Sci. USA 101, 6355–6360 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ajikumar, P.K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yuan, L.Z., Rouviere, P.E., Larossa, R.A. & Suh, W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab. Eng. 8, 79–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. De Mey, M. et al. Promoter knock-in: a novel rational method for the fine tuning of genes. BMC Biotechnol. 10, 26 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hammer, K., Mijakovic, I. & Jensen, P.R. Synthetic promoter libraries–tuning of gene expression. Trends Biotechnol. 24, 53–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Miksch, G. et al. Libraries of synthetic stationary-phase and stress promoters as a tool for fine-tuning of expression of recombinant proteins in Escherichia coli. J. Biotechnol. 120, 25–37 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Cox, R.S. III, Surette, M.G. & Elowitz, M.B. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Smolke, C.D., Martin, V.J. & Keasling, J.D. Controlling the metabolic flux through the carotenoid pathway using directed mRNA processing and stabilization. Metab. Eng. 3, 313–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Pfleger, B.F., Pitera, D.J., Smolke, C.D. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24, 1027–1032 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Salis, H., Mirsky, E. & Voigt, C. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holtz, W.J. & Keasling, J.D. Engineering static and dynamic control of synthetic pathways. Cell 140, 19–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Dunlop, M.J., Keasling, J.D. & Mukhopadhyay, A. A model for improving microbial biofuel production using a synthetic feedback loop. Syst. Synth. Biol. 4, 95–104 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shamah, S.M., Healy, J.M. & Cload, S.T. Complex target SELEX. Acc. Chem. Res. 41, 130–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Fazelinia, H., Cirino, P.C. & Maranas, C.D. Extending Iterative Protein Redesign and Optimization (IPRO) in protein library design for ligand specificity. Biophys. J. 92, 2120–2130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A. & Breaker, R.R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428, 281–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Dietrich, J.A., Shis, D.L., Alikhani, A. & Keasling, J.D. Transcription factor-based screens and synthetic selections for microbial small-molecule biosynthesis. ACS Synth. Biol. 2, 47–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, F., Carothers, J.M. & Keasling, J.D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354–359 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Reiling, K.K. et al. Mono and diterpene production in Escherichia coli. Biotechnol. Bioeng. 87, 200–212 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Ro, D.K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Withers, S.T., Gottlieb, S.S., Lieu, B., Newman, J.D. & Keasling, J.D. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl. Environ. Microbiol. 73, 6277–6283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kizer, L., Pitera, D.J., Pfleger, B.F. & Keasling, J.D. Application of functional genomics to pathway optimization for increased isoprenoid production. Appl. Environ. Microbiol. 74, 3229–3241 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Pitera, D.J., Paddon, C.J., Newman, J.D. & Keasling, J.D. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab. Eng. 9, 193–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Meshnick, S.R. Artemisinin: mechanisms of action, resistance and toxicity. Int. J. Parasitol. 32, 1655–1660 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Rowinsky, E.K. & Donehower, R.C. Paclitaxel (taxol). N. Engl. J. Med. 332, 1004–1014 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Krings, U. & Berger, R.G. Biotechnological production of flavours and fragrances. Appl. Microbiol. Biotechnol. 49, 1–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Peralta-Yahya, P.P. et al. Identification and microbial production of a terpene-based advanced biofuel. Nat. Commun. 2, 483 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Martin, V.J., Yoshikuni, Y. & Keasling, J.D. The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotechnol. Bioeng. 75, 497–503 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Dehal, P.S. et al. MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res. 38, D396–D400 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Groisman, E.A. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183, 1835–1842 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hinson, D.D., Chambliss, K.L., Toth, M.J., Tanaka, R.D. & Gibson, K.M. Post-translational regulation of mevalonate kinase by intermediates of the cholesterol and nonsterol isoprene biosynthetic pathways. J. Lipid Res. 38, 2216–2223 (1997).

    CAS  PubMed  Google Scholar 

  36. Ferrandez, A., Garcia, J.L. & Diaz, E. Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli. J. Biol. Chem. 275, 12214–12222 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Chin, C.S., Chubukov, V., Jolly, E.R., DeRisi, J. & Li, H. Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways. PLoS Biol. 6, e146 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wolfe, A.J. The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Redding-Johanson, A.M. et al. Targeted proteomics for metabolic pathway optimization: application to terpene production. Metab. Eng. 13, 194–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Hommais, F. et al. GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology 150, 61–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Sayed, A.K. & Foster, J.W. A 750 bp sensory integration region directs global control of the Escherichia coli GadE acid resistance regulator. Mol. Microbiol. 71, 1435–1450 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Weber, H., Polen, T., Heuveling, J., Wendisch, V.F. & Hengge, R. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 187, 1591–1603 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kang, Z., Wang, Q., Zhang, H. & Qi, Q. Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl. Microbiol. Biotechnol. 79, 203–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Zaslaver, A. et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat. Methods 3, 623–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Salis, H.M., Mirsky, E.A. & Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karig, D. & Weiss, R. Signal-amplifying genetic circuit enables in vivo observation of weak promoter activation in the Rhl quorum sensing system. Biotechnol. Bioeng. 89, 709–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Voigt, C.A. Genetic parts to program bacteria. Curr. Opin. Biotechnol. 17, 548–557 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Mahmoud, S.S. & Croteau, R.B. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc. Natl. Acad. Sci. USA 98, 8915–8920 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Shewmaker, C.K., Sheehy, J.A., Daley, M., Colburn, S. & Ke, D.Y. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J. 20, 401–412 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Grotewold, E. et al. Engineering secondary metabolism in maize cells by ectopic expression of transcription factors. Plant Cell 10, 721–740 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen, C. et al. Cell-specific and conditional expression of caffeoyl-coenzyme A-3-O-methyltransferase in poplar. Plant Physiol. 123, 853–868 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, A., Kroon, P.A. & Poulter, C.D. Isoprenyl diphosphate synthases: protein sequence comparisons, a phylogenetic tree, and predictions of secondary structure. Protein Sci. 3, 600–607 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, T.S. et al. BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J. Biol. Eng. 5, 12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Colantuoni, C., Henry, G., Zeger, S. & Pevsner, J. SNOMAD (Standardization and Normalization of MicroArray Data): web-accessible gene expression data analysis. Bioinformatics 18, 1540–1541 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Sturn, A., Quackenbush, J. & Trajanoski, Z. Genesis: cluster analysis of microarray data. Bioinformatics 18, 207–208 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. Pitera for the pADSmut plasmid and W. Holtz for the BglBrick plasmids with the lacUV5 promoter and LacIQ removed. J.A.-G. thanks Fundacion Ramon Areces for his PostDoc fellowship. This work was part of the Department of Energy Joint BioEnergy Institute (http://www.jbei.org/) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

R.H.D. and J.D.K. conceived the project. R.H.D. performed the growth experiments, microarrays and the construction of the responsive promoters. F.Z. constructed and analyzed the HMG-CoA biosensor. J.A.-G. analyzed the FPP sensor. E.B. performed metabolite analysis. T.S.B., A.M.R.-J. and C.J.P. performed the proteomic analysis. T.S.L., A.M. and P.D.A. directed aspects of the project. R.H.D., F.Z., J.A.-G. and J.D.K. wrote the manuscript.

Corresponding author

Correspondence to Jay D Keasling.

Ethics declarations

Competing interests

J.D.K. has a financial interest in Amyris, Lygos and LS9.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–4 (PDF 1789 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahl, R., Zhang, F., Alonso-Gutierrez, J. et al. Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 31, 1039–1046 (2013). https://doi.org/10.1038/nbt.2689

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2689

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research