Abstract
Evolution of resistance in pests can reduce the effectiveness of insecticidal proteins from Bacillus thuringiensis (Bt) produced by transgenic crops. We analyzed results of 77 studies from five continents reporting field monitoring data for resistance to Bt crops, empirical evaluation of factors affecting resistance or both. Although most pest populations remained susceptible, reduced efficacy of Bt crops caused by field-evolved resistance has been reported now for some populations of 5 of 13 major pest species examined, compared with resistant populations of only one pest species in 2005. Field outcomes support theoretical predictions that factors delaying resistance include recessive inheritance of resistance, low initial frequency of resistance alleles, abundant refuges of non-Bt host plants and two-toxin Bt crops deployed separately from one-toxin Bt crops. The results imply that proactive evaluation of the inheritance and initial frequency of resistance are useful for predicting the risk of resistance and improving strategies to sustain the effectiveness of Bt crops.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
National Research Council. The Impact of Genetically Engineered Crops on Farm Sustainability in the United States (National Academies Press, Washington, DC, 2010).
James, C. Global status of commercialized biotech/GM crops: 2011. ISAAA Briefs 43 (ISAAA, Ithaca, NY, 2011).
Alyokhin, A. Scant evidence supports EPA's pyramided Bt corn refuge size of 5%. Nat. Biotechnol. 29, 577–578 (2011).
Mendelsohn, M., Kough, J., Vaituzis, Z. & Matthews, K. Are Bt crops safe? Nat. Biotechnol. 21, 1003–1009 (2003).
Sanahuja, G., Banakar, R., Twyman, R., Capell, T. & Christou, P. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9, 283–300 (2011).
Wu, K.M., Lu, Y.H., Feng, H.Q., Jiang, Y.Y. & Zhao, J.Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321, 1676–1678 (2008).
Carpenter, J.E. Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat. Biotechnol. 28, 319–321 (2010).
Hutchison, W.D. et al. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330, 222–225 (2010).
Tabashnik, B.E. et al. Suppressing resistance to Bt cotton with sterile insect releases. Nat. Biotechnol. 28, 1304–1307 (2010).
Edgerton, M.D. et al. Transgenic insect resistance traits increase corn yield and yield stability. Nat. Biotechnol. 30, 493–496 (2012).
Kathage, J.K. & Qaim, M. Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proc. Natl. Acad. Sci. USA 109, 11652–11656 (2012).
Lu, Y., Wu, K., Jiang, Y., Guo, Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).
Onstad, D. Insect Resistance Management: Biology, Economics, and Prediction (Academic Press, London, 2008).
Heckel, D.G. Insecticide resistance after Silent Spring. Science 337, 1612–1614 (2012).
Tabashnik, B.E. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39, 47–79 (1994).
Gould, F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).
Ferré, J. & Van Rie, J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47, 501–533 (2002).
Pardo-López, L., Bravo, A. & Soberón, M. Bacillus thuringiensis insecticidal three-domain toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol. Rev. 37, 3–22 (2013).
Carrière, Y., Crowder, D.W. & Tabashnik, B.E. Evolutionary ecology of insect adaptation to Bt crops. Evol. Appl. 3, 561–573 (2010).
Tabashnik, B.E., Gassmann, A.J., Crowder, D.W. & Carrière, Y. Insect resistance to Bt crops: evidence versus theory. Nat. Biotechnol. 26, 199–202 (2008).
Tabashnik, B.E., Van Rensburg, J.B.J. & Carrière, Y. Field-evolved insect resistance to Bt crops: definition, theory, and data. J. Econ. Entomol. 102, 2011–2025 (2009).
Huang, F., Andow, D.A. & Buschman, L. Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol. Exp. Appl. 140, 1–16 (2011).
Tabashnik, B.E. Delaying insect resistance to transgenic crops. Proc. Natl. Acad. Sci. USA 105, 19029–19030 (2008).
Georghiou, G.P. & Taylor, C.E. Genetic and biological influences in the evolution of insecticide resistance. J. Econ. Entomol. 70, 319–323 (1977).
Tabashnik, B.E. & Croft, B.A. Managing pesticide resistance in crop-arthropod complexes: interactions between biological and operational factors. Environ. Entomol. 11, 1137–1144 (1982).
US Environmental Protection Agency. The Environmental Protection Agency's White Paper on Bt Plant-pesticide Resistance Management <http://www.epa.gov/EPA-PEST/1998/January/Day-14/paper.pdf> (EPA, 1998).
Tabashnik, B.E., Gould, F. & Carrière, Y. Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability. J. Evol. Biol. 17, 904–912 (2004).
Carrière, Y. & Tabashnik, B.E. Reversing insect adaptation to transgenic insecticidal plants. Proc. Biol. Sci. 268, 1475–1480 (2001).
Gassmann, A.J., Carrière, Y. & Tabashnik, B.E. Fitness costs of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 54, 147–163 (2009).
Liu, Y.B. & Tabashnik, B.E. Inheritance of resistance to Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl. Environ. Microbiol. 63, 2218–2223 (1997).
US Environmental Protection Agency. Final Report of the Subpanel on Bacillus thuringiensis (Bt) Plant-Pesticides and Resistance Management, February, 1998 <http://www.epa.gov/scipoly/sap/meetings/1998/0298_mtg.htm> (EPA, 1998).
Roush, R.T. Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? Pestic. Sci. 51, 328–334 (1997).
Pittendrigh, B.R. et al. “Active” refuges can inhibit the evolution of resistance in insects towards transgenic insect-resistant plants. J. Theor. Biol. 231, 461–474 (2004).
Roush, R.T. Managing pests and their resistance to Bacillus thuringiensis: can transgenic crops be better than sprays? Biocontrol Sci. Technol. 4, 501–516 (1994).
Andow, D.A., Olson, D.M., Hellmich, R.L., Alstad, D.N. & Hutchison, W.D. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an Iowa population of European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 93, 26–30 (2000).
Bourguet, D. et al. Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of the European corn borer, Ostrinia nubilalis. Theor. Appl. Genet. 106, 1225–1233 (2003).
Stodola, T.J. et al. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in southern United States corn belt populations of European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol. 99, 502–507 (2006).
Huang, F., Parker, R., Leonard, R. & Yong, Y. & Liu, J. Frequency of resistance alleles to Bacillus thuringiensis-corn in Texas populations of sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae). Crop Prot. 28, 174–180 (2009).
Gould, F., Cohen, M.B., Bentur, J.S., Kennedy, G.G. & Van Duyn, J. Impact of small fitness costs on pest adaptation to crop varieties with multiple toxins: a heuristic model. J. Econ. Entomol. 99, 2091–2099 (2006).
Pan, Z. et al. Western corn rootworm (Coleoptera: Chrysomelidae) dispersal and adaptation to single-toxin transgenic corn deployed with block or blended refuge. Environ. Entomol. 40, 964–978 (2011).
Gustafson, D.I., Head, G.P. & Caprio, M.A. Modeling the impact of alternative hosts on Helicoverpa zea adaptation to Bollgard cotton. J. Econ. Entomol. 99, 2116–2124 (2006).
Baker, G.H., Tann, C.T. & Fitt, G.P. Production of Helicoverpa spp. (Lepidoptera, Noctuidae) from different refuge crops to accompany transgenic cotton plantings in eastern Australia. Aust. J. Agric. Res. 59, 723–732 (2008).
Head, G. et al. Spatial and temporal variability in host use by Helicoverpa zea as measured by analyses of stable carbon isotope ratios and gossypol residues. J. Appl. Ecol. 47, 583–592 (2010).
O'Rourke, M.E., Sappington, T.W. & Fleischer, S.J. Managing resistance to Bt crops in a genetically variable insect herbivore, Ostrinia nubilalis. Ecol. Appl. 20, 1228–1236 (2010).
Brévault, T., Nibouche, S., Achaleke, J. & Carrière, Y. Assessing the role of non-cotton refuges in delaying Helicoverpa armigera resistance to Bt cotton in West Africa. Evol. Appl. 5, 53–65 (2012).
Carrière, Y. et al. Large-scale, spatially explicit test of the refuge strategy for delaying insecticide resistance. Proc. Natl. Acad. Sci. USA 109, 775–780 (2012).
Zhao, J.-Z. et al. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc. Natl. Acad. Sci. USA 102, 8426–8430 (2005).
Brévault, T. et al. Potential shortfall of pyramided transgenic cotton for insect resistance management. Proc. Natl. Acad. Sci. USA 110, 5806–5811 (2013).
National Research Council. Pesticide Resistance: Strategies and Tactics for Management (National Academy Press, Washington D.C., 1986).
Liu, Y.B., Tabashnik, B.E. & Pusztai-Carey, M. Field-evolved resistance to Bacillus thuringiensis toxin CryIC in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 80, 798–804 (1996).
Tang, J.D. et al. Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella). Appl. Environ. Microbiol. 62, 564–569 (1996).
Zhang, H. et al. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China. PLoS ONE 6, e22874 (2011).
Downes, S., Parker, T. & Mahon, R. Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II cotton. PLoS ONE 5, e12567 (2010).
Wan, P. et al. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac. PLoS ONE 7, e29975 (2012).
Alcantara, E., Estrada, A., Alpuerto, V. & Head, G. Monitoring Cry1Ab susceptibility in Asian corn borer (Lepidoptera: Crambidae) on Bt corn in the Philippines. Crop Prot. 30, 554–559 (2011).
Huang, F. et al. Extended monitoring of resistance to Bacillus thuringiensis Cry1Ab maize in Diatraea saccharalis (Lepidoptera: Crambidae). GM Crops Food 3, 245–254 (2012).
Downes, S. & Mahon, R. Evolution, ecology and management of resistance in Helicoverpa spp. to Bt cotton in Australia. J. Invertebr. Pathol. 110, 281–286 (2012).
Downes, S. & Mahon, R. Successes and challenges of managing resistance in Helicoverpa armigera to Bt cotton in Australia. GM Crops Food 3, 228–234 (2012).
Ali, M.I., Luttrell, R.G. & Young, S.Y. Susceptibilities of Helicoverpa zea and Heliothis virescens (Lepidoptera: Noctuidae) populations to Cry1Ac insecticidal protein. J. Econ. Entomol. 99, 164–175 (2006).
Luttrell, R.G., Wan, L. & Knighten, K. Variation in susceptibility of Noctuid (Lepidoptera) larvae attacking cotton and soybean to purified endotoxin proteins and commercial formulations of Bacillus thuringiensis. J. Econ. Entomol. 92, 21–32 (1999).
McCaffery, A.R. Resistance to insecticides in heliothine Lepidoptera: a global view. Philos. Trans. R. Soc. Lond., B 353, 1735–1750 (1998).
Arthropod Pesticide Resistance Database. Michigan State University. <http://www.pesticideresistance.com/>
Tabashnik, B.E. & Gould, F. Delaying corn rootworm resistance to Bt corn. J. Econ. Entomol. 105, 767–776 (2012).
Crespo, A.L.B. et al. On-plant survival and inheritance of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. Pest Manag. Sci. 65, 1071–1081 (2009).
Bird, L.J. & Akhurst, R.J. Relative fitness of Cry1A-resistant and -susceptible Helicoverpa armigera (Lepidoptera, Noctuidae) on conventional and transgenic cotton. J. Econ. Entomol. 97, 1699–1709 (2004).
Bird, L.J. & Akhurst, R.J. The fitness of Cry1A-resistant and -susceptible Helicoverpa armigera (Lepidoptera, Noctuidae) on transgenic cotton with reduced levels of Cry1Ac. J. Econ. Entomol. 98, 1311–1319 (2005).
United States Department of Agriculture Economic Research Service. Adoption of Genetically Engineered Crops in the US <http://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us.aspx> (2012).
Gould, F. et al. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proc. Natl. Acad. Sci. USA 94, 3519–3523 (1997).
Blanco, C.A. et al. Bacillus thuringiensis Cry1Ac resistance frequency in tobacco budworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 102, 381–387 (2009).
Tabashnik, B.E. et al. DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure. J. Econ. Entomol. 99, 1525–1530 (2006).
Tabashnik, B.E., Dennehy, T.J. & Carrière, Y. Delayed resistance to transgenic cotton in pink bollworm. Proc. Natl. Acad. Sci. USA 102, 15389–15393 (2005).
USDA Agricultural Marketing Service. Cotton Varieties Planted 2012 Crop. <http://usda.mannlib.cornell.edu/usda/ams/CNAVAR.pdf>
Kruger, M.J., Van Rensburg, J.B.J. & Van den Berg, J. Perspective on the development of stem borer resistance to Bt maize and refuge compliance at the Vaalharts irrigation scheme in South Africa. Crop Prot. 28, 684–689 (2009).
Kruger, M.J., Van Rensburg, J.B.J. & Van den Berg, J. Transgenic Bt maize: farmers' perceptions, refuge compliance and reports of stem borer resistance in South Africa. J. Appl. Entomol. 136, 38–50 (2012).
Storer, N.P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).
Storer, N.P., Kubiszak, M.E., King, J.E., Thompson, G. D. & Santos A. C. Status of resistance to Bt maize in Spodoptera frugiperda: lessons from Puerto Rico. J. Invertebr. Pathol. 110, 294–300 (2012).
Carrière, Y. et al. Long-term evaluation of compliance with refuge requirements for Bt cotton. Pest Manag. Sci. 61, 327–330 (2005).
Tabashnik, B.E. et al. Sustained susceptibility of pink bollworm to Bt cotton in the United States. GM Crops Food 3, 194–200 (2012).
Stone, G.D. Biotechnology and the political ecology of information in India. Hum. Organ. 63, 127–140 (2004).
Choudhary, B. & Gaur, K. Bt Cotton in India: A Country Profile. ISAAA Series of Biotech Crop Profiles (ISAAA, Ithaca, NY, 2010).
Herring, R.J. Stealth seeds: Bioproperty, biosafety, biopolitics. J. Dev. Stud. 43, 130–157 (2007).
US Environmental Protection Agency. Biopesticides registration action document—Bacillus thuringiensis plant-incorporated protectants) <http://www.epa.gov/pesticides/biopesticides/pips/bt_brad.htm> (2001).
Cotton CRC Extension Team. Cotton pest management guide 2009–10. <http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0004/154768/cotton-pest-management-guide.pdf> (2009).
US Environmental Protection Agency. Pesticide News Story: EPA Approves Natural Refuge for Insect Resistance Management in Bollgard II Cotton <http://www.epa.gov/oppfead1/cb/csb_page/updates/2007/bollgard-cotton.htm> (2007).
Mahon, R.J., Downes, S.J. & James, B. Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin. PLoS ONE 7, e39192 (2012).
Tabashnik, B.E. et al. Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nat. Biotechnol. 29, 1128–1131 (2011).
Baum, J.A. et al. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25, 1322–1326 (2007).
Mao, Y.-B. et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25, 1307–1313 (2007).
Huvenne, H. & Smagghe, G. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J. Insect Physiol. 56, 227–235 (2010).
Sainsbury, F., Benchabane, M., Goulet, M.-C. & Michaud, D. Multimodal protein constructs for herbivore insect control. Toxins 4, 455–475 (2012).
Lalitha, N., Ramaswami, B. & Viswanathan, P.K. India's experience with Bt cotton: case studies from Gujarat and Maharashtra. in Biotechnology and Agricultural Development: Transgenic Cotton, Rural Institutions and Resource-Poor Farmers (ed. Tripp, R.) 135–167 (Routledge, New York, 2009).
Showalter, A.M., Heuberger, S., Tabashnik, B.E. & Carrière, Y. A primer for the use of insecticidal transgenic cotton in developing countries. J. Insect Sci. 9, 22 (2009).
Ali, M.I. & Luttrell, R.G. Susceptibility of bollworm and tobacco budworm (Noctuidae) to Cry2Ab2 insecticidal protein. J. Econ. Entomol. 100, 921–931 (2007).
Jackson, R.E., Gould, F., Bradley, J.R. Jr & Van Duyn, J. Genetic variation for resistance to Bacillus thuringiensis toxins in Helicoverpa zea (Lepidoptera: Noctuidae) in eastern North Carolina. J. Econ. Entomol. 99, 1790–1797 (2006).
Center for Environmental Risk Assessment. GM Crop Database. Event name: MON 89O3 <http://cera-gmc.org/index.php?evidcode%5B%5D=MON89034&auDate1=&auDate2=&action=gm_crop_database&mode=Submit>
Tabashnik, B.E. & Johnson, M.W. Evolution of pesticide resistance in natural enemies. in Handbook of Biological Control: Principles and Applications (eds. Fisher, T.W. & Bellows, T.S.) 673–689 (Academic Press, San Diego, 1999).
Dhurua, S. & Gujar, G.T. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. (2011).
Bagla, P. Hardy cotton-munching pests are latest blow to GM crops. Science 327, 1439 (2010).
Moar, W. et al. Field-evolved resistance to Bt toxins. Nat. Biotechnol. 26, 1072–1074 (2008).
United States Department of Agriculture National Agricultural Statistics Service. Acreage <http://usda.mannlib.cornell.edu/usda/nass/Acre/2000s/2009/Acre-06-30-2009.pdf> (2009).
Van Rensburg, J.B.J. First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S. African J. Plant Soil 24, 147–151 (2007).
Tabashnik, B.E. & Carrière, Y. Resistance to transgenic crops and pest outbreaks. in Insect Outbreaks Revisited (eds. Barbosa, P., Letourneau, D.K. & Agrawal, A.A.) 341–354 (Wiley-Blackwell, Chichester, UK, 2012)
Blanco, C.A. et al. Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis. Southwest. Entomologist 35, 409–415 (2010).
Pedra, J.H.F., McIntyre, L.M., Scharf, M.E. & Pittendrigh, B.R. Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichoroethane (DDT)-resistant Drosophila. Proc. Natl. Acad. Sci. USA 101, 7034–7039 (2004).
Brent, K.J. Detection and monitoring of resistant forms: an overview. in Pesticide Resistance: Strategies and Tactics for Management (National Research Council) 298–312 (National Academy Press, Washington D.C., 1986).
Whalon, M., Mota-Sanchez, D. & Hollingworth, R.M. Global Pesticide Resistance in Arthropods (CABI International, Wallingford, UK, 2008).
Kruger, M.J., Van Rensburg, J.B.J. & Van den Berg, J. Resistance to Bt maize in Busseola fusca (Lepidoptera: Noctuidae) from Vaalharts, South Africa. Environ. Entomol. 40, 477–483 (2011).
US Environmental Protection Agency. Current & Previously Registered Section 3 PIP Registrations. <http://www.epa.gov/pesticides/biopesticides/pips/pip_list.htm> (2011).
Monsanto Biotechnology Trait Acreage. Fiscal Years 1996 to 2009. <http://www.monsanto.com/investors/documents/2009/q4_biotech_acres.pdf> Updated: October 7, 2009.
Gassmann, A.J., Petzold-Maxwell, J.L., Keweshan, R.S. & Dunbar, M.W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6, e22629 (2011).
Gassmann, A.J., Petzold-Maxwell, J.L., Keweshan, R.S. & Dunbar, M.W. Western corn rootworm and Bt maize: challenges of pest resistance in the field. GM Crops Food 3, 235–244 (2012).
Gassmann, A.J. Field-evolved resistance to Bt maize by western corn rootworm: predictions from the laboratory and effects in the field. J. Invertebr. Pathol. 110, 287–293 (2012).
Monsanto. Cotton in India. <http://www.monsanto.com/newsviews/Pages/india-pink-bollworm.aspx> (2010).
Genetic Engineering Approval Committee. Decisions taken in the 100th Meeting of the Genetic Engineering Approval Committee (GEAC) held on 12.5.2010. <http://www.envfor.nic.in/divisions/csurv/geac/decision-may-100.pdf> (2010).
Tabashnik, B.E., Gassmann, A.J., Crowder, D.W. & Carrière, Y. Reply to Field-evolved resistance to Bt toxins. Nat. Biotechnol. 26, 1074–1076 (2008).
Tabashnik, B.E. & Carrière, Y. Field-evolved resistance to Bt cotton: Helicoverpa zea in the US and pink bollworm in India. Southwest. Entomologist 35, 417–424 (2010).
Luttrell, R.G. et al. Resistance to Bt in Arkansas populations of cotton bollworm. in Proceedings of the 2004 Beltwide Cotton Conferences, San Antonio, TX, January 5–9, 2004 (ed. Richter, D.A.) 1373–1383 (National Cotton Council of America, Memphis, TN, 2004).
Luttrell, R.G. & Jackson, R.E. Helicoverpa zea and Bt cotton in the United States. GM Crops Food 3, 213–227 (2012).
Luttrell, R.G. & Ali, M.I. Exploring selection for Bt resistance in heliothines: results of laboratory and field studies. in Proceedings of the 2007 Beltwide Cotton Conferences, New Orleans, LA, January 9–12, 2007 (eds. Boyd, S., Huffman, M., Richter, D. & Robertson, B.) 1073–1086 (National Cotton Council of America, Memphis, TN, 2007).
Jackson, R.E., Catchot, A., Gore, J. & Stewart, S.D. Increased survival of bollworms on Bollgard II cotton compared to lab-based colony. in Proceedings of the 2011 Beltwide Cotton Conferences, Atlanta, GA, January 4–7, 2011 (eds. Boyd, S., Huffman, M. & Robertson, B.) 893–894 (National Cotton Council of America, Memphis, TN; 2011).
Williams, M.R. Cotton insect loss estimate. in Proceedings of the 2012 Beltwide Cotton Conferences, Orlando, FL, January 3–6, 2012 (eds. Boyd, S., Huffman, M. & Robertson, B.) 1001–1012 (National Cotton Council of America, Memphis, TN, 2012).
Jackson, R.E., Bradley, J.R. Jr., Van Duyn, J.W. & Gould, F. Comparative production of Helicoverpa zea (Lepidoptera: Noctuidae) from transgenic cotton expressing either one or two Bacillus thuringiensis proteins with and without insecticide oversprays. J. Econ. Entomol. 97, 1719–1725 (2004).
Acknowledgements
We thank A. Yelich for assistance with figures, and D. Crowder, L. Masson and M. Sisterson for providing comments. This work was supported by US Department of Agriculture (USDA) Agriculture and Food Research Initiative Grant 2008-35302-0390 and USDA Biotechnology Risk Assessment Grant 2011-33522-30729.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
B.E.T. is coauthor of a patent on engineering modified Bt toxins to counter pest resistance, which is related to published research (Nat. Biotechnol. 29, 1128–1131, 2011). Dow AgroSciences, Monsanto and Bayer CropScience did not provide funding to support this work, but may be affected financially by publication of this paper and have funded other work by B.E.T.
Supplementary information
Supplementary Text and Figures
Supplementary Methods, Supplementary Tables 1–9 and Supplementary Figure 1 (PDF 695 kb)
Rights and permissions
About this article
Cite this article
Tabashnik, B., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol 31, 510–521 (2013). https://doi.org/10.1038/nbt.2597
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nbt.2597
This article is cited by
-
The evaluation of resistance risk to Cry2Ab and cross-resistance to other insecticides in Helicoverpa armigera
Journal of Pest Science (2023)
-
Effect of Bt zygosity in transgenic maize hybrids to the non-target pest Dalbulus maidis
Journal of Pest Science (2023)
-
Refuge areas favor the presence of predators and herbivores in Bt soybean: a landscape perspective
Journal of Pest Science (2023)
-
Transgenic maize inbred lines expressing high levels of Bacillus thuringiensis vegetative insecticidal protein (Vip3Aa86) offer effective control of maize stem borer (Chilo partellus)
Plant Cell, Tissue and Organ Culture (PCTOC) (2023)
-
Host-Delivered RNA Interference for Durable Pest Resistance in Plants: Advanced Methods, Challenges, and Applications
Molecular Biotechnology (2023)