Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Medial ganglionic eminence–like cells derived from human embryonic stem cells correct learning and memory deficits

Abstract

Dysfunction of basal forebrain cholinergic neurons (BFCNs) and γ-aminobutyric acid (GABA) interneurons, derived from medial ganglionic eminence (MGE), is implicated in disorders of learning and memory. Here we present a method for differentiating human embryonic stem cells (hESCs) to a nearly uniform population of NKX2.1+ MGE-like progenitor cells. After transplantation into the hippocampus of mice in which BFCNs and some GABA neurons in the medial septum had been destroyed by mu P75-saporin, human MGE-like progenitors, but not ventral spinal progenitors, produced BFCNs that synaptically connected with endogenous neurons, whereas both progenitors generated similar populations of GABA neurons. Mice transplanted with MGE-like but not spinal progenitors showed improvements in learning and memory deficits. These results suggest that progeny of the MGE-like progenitors, particularly BFCNs, contributed to learning and memory. Our findings support the prospect of using human stem cell–derived MGE-like progenitors in developing therapies for neurological disorders of learning and memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SHH-dependent specification of basal forebrain progenitors from hESCs.
Figure 2: Differentiation of basal forebrain progenitors to cholinergic neurons and GABAergic interneurons.
Figure 3: Survival, proliferation and differentiation of grafted cells in lesioned hippocampi.
Figure 4: Differentiation and integration of grafted GABA+ neurons.
Figure 5: Differentiation and integration of cholinergic neurons.
Figure 6: Transplantation of hESC-derived MGE progenitors contributes to functional recovery.

Similar content being viewed by others

References

  1. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J.L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    CAS  PubMed  Google Scholar 

  2. Rubenstein, J.L., Shimamura, K., Martinez, S. & Puelles, L. Regionalization of the prosencephalic neural plate. Annu. Rev. Neurosci. 21, 445–477 (1998).

    Article  CAS  Google Scholar 

  3. Wilson, S.W. & Rubenstein, J.L. Induction and dorsoventral patterning of the telencephalon. Neuron 28, 641–651 (2000).

    Article  CAS  Google Scholar 

  4. Zhao, Y. et al. The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc. Natl. Acad. Sci. USA 100, 9005–9010 (2003).

    Article  CAS  Google Scholar 

  5. Campbell, K. Dorsal-ventral patterning in the mammalian telencephalon. Curr. Opin. Neurobiol. 13, 50–56 (2003).

    Article  CAS  Google Scholar 

  6. Woolf, N.J. Cholinergic systems in mammalian brain and spinal cord. Prog. Neurobiol. 37, 475–524 (1991).

    Article  CAS  Google Scholar 

  7. Oliveira, A.A. Jr. & Hodges, H.M. Alzheimer's disease and neural transplantation as prospective cell therapy. Curr. Alzheimer Res. 2, 79–95 (2005).

    Article  CAS  Google Scholar 

  8. Whitehouse, P.J. et al. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

    Article  CAS  Google Scholar 

  9. Pang, K.C., Jiao, X., Sinha, S., Beck, K.D. & Servatius, R.J. Damage of GABAergic neurons in the medial septum impairs spatial working memory and extinction of active avoidance: effects on proactive interference. Hippocampus. 21, 835–846 (2011).

    CAS  PubMed  Google Scholar 

  10. Dwyer, T.A., Servatius, R.J. & Pang, K.C. Noncholinergic lesions of the medial septum impair sequential learning of different spatial locations. J. Neurosci. 27, 299–303 (2007).

    Article  CAS  Google Scholar 

  11. Zhang, S.C. Neural subtype specification from embryonic stem cells. Brain Pathol. 16, 132–142 (2006).

    Article  CAS  Google Scholar 

  12. Yamanaka, S. A fresh look at iPS cells. Cell 137, 13–17 (2009).

    Article  CAS  Google Scholar 

  13. Li, X.J. et al. Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215–221 (2005).

    Article  Google Scholar 

  14. Pankratz, M.T. et al. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25, 1511–1520 (2007).

    Article  CAS  Google Scholar 

  15. Li, X.J. et al. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development 136, 4055–4063 (2009).

    Article  CAS  Google Scholar 

  16. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    Article  CAS  Google Scholar 

  17. Ma, L. et al. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10, 455–464 (2012).

    Article  CAS  Google Scholar 

  18. Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M. & McKay, R.D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679 (2000).

    Article  CAS  Google Scholar 

  19. Xi, J. et al. Specification of midbrain dopamine neurons from primate pluripotent stem cells. Stem Cells. 30, 1655–1663 (2012).

    Article  CAS  Google Scholar 

  20. Kirkeby, A. et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 1, 703–714 (2012).

    Article  CAS  Google Scholar 

  21. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 480, 547–551 (2011).

    Article  CAS  Google Scholar 

  22. Singh Roy, N. et al. Enhancer-specified GFP-based FACS purification of human spinal motor neurons from embryonic stem cells. Exp. Neurol. 196, 224–234 (2005).

    Article  Google Scholar 

  23. Yang, D., Zhang, Z.J., Oldenburg, M., Ayala, M. & Zhang, S.C. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 26, 55–63 (2008).

    Article  CAS  Google Scholar 

  24. Roy, N.S. et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat. Med. 12, 1259–1268 (2006).

    Article  CAS  Google Scholar 

  25. Cooper, O. et al. Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Mol. Cell Neurosci. 45, 258–266 (2010).

    Article  CAS  Google Scholar 

  26. Hargus, G. et al. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl. Acad. Sci. USA 107, 15921–15926 (2010).

    Article  CAS  Google Scholar 

  27. Zhang, S.C., Wernig, M., Duncan, I.D., Brustle, O. & Thomson, J.A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–1133 (2001).

    Article  CAS  Google Scholar 

  28. Flames, N. et al. Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J. Neurosci. 27, 9682–9695 (2007).

    Article  CAS  Google Scholar 

  29. Manabe, T. et al. L3/Lhx8 is involved in the determination of cholinergic or GABAergic cell fate. J. Neurochem. 94, 723–730 (2005).

    Article  CAS  Google Scholar 

  30. Krencik, R., Weick, J.P., Liu, Y., Zhang, Z.J. & Zhang, S.C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat. Biotechnol. 29, 528–534 (2011).

    Article  CAS  Google Scholar 

  31. Reilly, J.O., Karavanova, I.D., Williams, K.P., Mahanthappa, N.K. & Allendoerfer, K.L. Cooperative effects of Sonic Hedgehog and NGF on basal forebrain cholinergic neurons. Mol. Cell Neurosci. 19, 88–96 (2002).

    Article  CAS  Google Scholar 

  32. Cassel, J.C. et al. Grafts of fetal septal cells after cholinergic immunotoxic denervation of the hippocampus: a functional dissociation between dorsal and ventral implantation sites. Neuroscience 113, 871–882 (2002).

    Article  CAS  Google Scholar 

  33. Leanza, G., Martinez-Serrano, A. & Bjorklund, A. Amelioration of spatial navigation and short-term memory deficits by grafts of foetal basal forebrain tissue placed into the hippocampus and cortex of rats with selective cholinergic lesions. Eur. J. Neurosci. 10, 2353–2370 (1998).

    Article  CAS  Google Scholar 

  34. Berger-Sweeney, J. et al. Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior. J. Neurosci. 21, 8164–8173 (2001).

    Article  CAS  Google Scholar 

  35. Walsh, T.J., Herzog, C.D., Gandhi, C., Stackman, R.W. & Wiley, R.G. Injection of IgG 192-saporin into the medial septum produces cholinergic hypofunction and dose-dependent working memory deficits. Brain Res. 726, 69–79 (1996).

    Article  CAS  Google Scholar 

  36. Jinno, S. Regional and laminar differences in antigen profiles and spatial distributions of astrocytes in the mouse hippocampus, with reference to aging. Neuroscience 180, 41–52 (2011).

    Article  CAS  Google Scholar 

  37. Francis, P.T. Glutamatergic systems in Alzheimer's disease. Int. J. Geriatr. Psychiatry 18, S15–S21 (2003).

    Article  Google Scholar 

  38. Weick, J.P., Liu, Y. & Zhang, S.C. Human embryonic stem cell-derived neurons adopt and regulate the activity of an established neural network. Proc. Natl. Acad. Sci. USA 108, 20189–20194 (2011).

    Article  CAS  Google Scholar 

  39. Weick, J.P. et al. Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells 28, 2008–2016 (2010).

    Article  CAS  Google Scholar 

  40. Danjo, T. et al. Subregional specification of embryonic stem cell–derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J. Neurosci. 31, 1919–1933 (2011).

    Article  CAS  Google Scholar 

  41. Bissonnette, C.J. et al. The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells 29, 802–811 (2011).

    Article  Google Scholar 

  42. Pankratz, M.T. et al. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 25, 1511–1520 (2007).

    Article  CAS  Google Scholar 

  43. Martinez-Cerdeno, V. et al. Embryonic MGE precursor cells grafted into adult rat striatum integrate and ameliorate motor symptoms in 6-OHDA-lesioned rats. Cell Stem Cell 6, 238–250 (2010).

    Article  CAS  Google Scholar 

  44. Gage, F.H., Bjorklund, A., Stenevi, U., Dunnett, S.B. & Kelly, P.A. Intrahippocampal septal grafts ameliorate learning impairments in aged rats. Science 225, 533–536 (1984).

    Article  CAS  Google Scholar 

  45. Emborg, M.E. et al. GDNF-secreting human neural progenitor cells increase tyrosine hydroxylase and VMAT2 expression in MPTP-treated cynomolgus monkeys. Cell Transplant. 17, 383–395 (2008).

    Article  Google Scholar 

  46. Gage, F.H. & Bjorklund, A. Trophic and growth-regulating mechanisms in the central nervous system monitored by intracerebral neural transplants. Ciba Found. Symp. 126, 143–159 (1987).

    CAS  PubMed  Google Scholar 

  47. Lecourtier, L. et al. Septohippocampal pathways contribute to system consolidation of a spatial memory: sequential implication of gabaergic and cholinergic neurons. Hippocampus 21, 1277–1289 (2011).

    Article  CAS  Google Scholar 

  48. Aubry, L. et al. Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc. Natl. Acad. Sci. USA 105, 16707–16712 (2008).

    Article  CAS  Google Scholar 

  49. Li, X.J. et al. Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 26, 886–893 (2008).

    Article  CAS  Google Scholar 

  50. Hu, B.Y. & Zhang, S.C. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat. Protoc. 4, 1295–1304 (2009).

    Article  CAS  Google Scholar 

  51. Du, Z.W., Hu, B.Y., Ayala, M., Sauer, B. & Zhang, S.C. Cre recombination-mediated cassette exchange for building versatile transgenic human embryonic stem cells lines. Stem Cells 27, 1032–1041 (2009).

    Article  CAS  Google Scholar 

  52. Johnson, M.A., Weick, J.P., Pearce, R.A. & Zhang, S.C. Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J. Neurosci. 27, 3069–3077 (2007).

    Article  CAS  Google Scholar 

  53. LaVaute, T.M. et al. Regulation of neural specification from human embryonic stem cells by BMP and FGF. Stem Cells 27, 1741–1749 (2009).

    Article  CAS  Google Scholar 

  54. Peterson, D.A. Quantitative histology using confocal microscopy: implementation of unbiased stereology procedures. Methods 18, 493–507 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.E. Andrzejewski and H. Mitchell for help in analyzing animal behavioral data. This study was supported in part by the US National Institute of Neurological Disorders and Stroke (NS045926) and the National Institute of Child Health and Human Development (P30 HD03352).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and S.-C.Z. designed the experiments and wrote the manuscript. Y.L., J.P.W., H.L., R.K., X.Z., L.M., G.Z. and M.A. performed the experiments. Y.L., J.P.W., H.L., R.K., X.Z., L.M., M.A. and S.-C.Z. analyzed the data.

Corresponding author

Correspondence to Su-Chun Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–4 (PDF 5554 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Weick, J., Liu, H. et al. Medial ganglionic eminence–like cells derived from human embryonic stem cells correct learning and memory deficits. Nat Biotechnol 31, 440–447 (2013). https://doi.org/10.1038/nbt.2565

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2565

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing