Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Efficient genome editing in zebrafish using a CRISPR-Cas system

Abstract

In bacteria, foreign nucleic acids are silenced by clustered, regularly interspaced, short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems. Bacterial type II CRISPR systems have been adapted to create guide RNAs that direct site-specific DNA cleavage by the Cas9 endonuclease in cultured cells. Here we show that the CRISPR-Cas system functions in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies similar to those obtained using zinc finger nucleases and transcription activator–like effector nucleases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrating naturally occurring and engineered CRISPR-Cas systems.

Similar content being viewed by others

References

  1. Wiedenheft, B., Sternberg, S.H. & Doudna, J.A. Nature 482, 331–338 (2012).

    Article  CAS  Google Scholar 

  2. Horvath, P. & Barrangou, R. Science 327, 167–170 (2010).

    Article  CAS  Google Scholar 

  3. Terns, M.P. & Terns, R.M. Curr. Opin. Microbiol. 14, 321–327 (2011).

    Article  CAS  Google Scholar 

  4. Barrangou, R. et al. Science 315, 1709–1712 (2007).

    Article  CAS  Google Scholar 

  5. Brouns, S.J. et al. Science 321, 960–964 (2008).

    Article  CAS  Google Scholar 

  6. Jinek, M. et al. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  7. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Proc. Natl. Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  CAS  Google Scholar 

  8. Mali, P. et al. Science doi:10.1126/science.1232033 (3 January 2013).

  9. Cong, L. et al. Science doi:10.1126/science.1231143 (3 January 2013).

  10. Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S. & Gregory, P.D. Nat. Rev. Genet. 11, 636–646 (2010).

    Article  CAS  Google Scholar 

  11. Joung, J.K. & Sander, J.D. Nat. Rev. Mol. Cell Biol. 14, 49–55 (2012).

    Article  Google Scholar 

  12. Holkers, M. et al. Nucleic Acids Res. doi:10.1093/nar/gks1446 (28 December 2012).

    Article  CAS  Google Scholar 

  13. Schneider, T.D. & Stormo, G.D. Nucleic Acids Res. 17, 659–674 (1989).

    Article  CAS  Google Scholar 

  14. Sander, J.D. et al. Nucleic Acids Res. 38, W462–W468 (2010).

    Article  CAS  Google Scholar 

  15. Foley, J.E. et al. PLoS ONE 4, e4348 (2009).

    Article  Google Scholar 

  16. Huang, P. et al. Nat. Biotechnol. 29, 699–700 (2011).

    Article  Google Scholar 

  17. Cade, L. et al. Nucleic Acids Res. 40, 8001–8010 (2012).

    Article  CAS  Google Scholar 

  18. Sander, J.D. et al. Nat. Biotechnol. 29, 697–698 (2011).

    Article  CAS  Google Scholar 

  19. Sander, J.D. et al. Nat. Methods 8, 67–69 (2011).

    Article  CAS  Google Scholar 

  20. Zuker, M. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a US National Institutes of Health (NIH) Director's Pioneer Award DP1 GM105378 (J.K.J.), NIH R01 GM088040 (J.K.J. & R.T.P.), NIH P50 HG005550 (J.K.J.), the Jim and Ann Orr Research Scholar Award (J.K.J.), NIH K01 AG031300 (J.-R.J.Y.) and a Massachusetts General Hospital Claflin award (J.-R.J.Y.). We thank G. Church, J. Aach and P. Mali for sharing unpublished results and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

W.Y.H., Y.F., M.L.M., D.R., S.Q.T., J.D.S., R.T.P., J.-R.J.Y. and J.K.J. designed experiments. W.Y.H., Y.F., M.L.M., D.R., S.Q.T. and J.D.S. performed experiments. W.Y.H., Y.F., M.L.M., D.R., S.Q.T., J.D.S., R.T.P., J.-R.J.Y. and J.K.J. wrote the paper.

Corresponding authors

Correspondence to J-R Joanna Yeh or J Keith Joung.

Ethics declarations

Competing interests

J.K.J. has a financial interest in Transposagen Biopharmaceuticals.

Supplementary information

Supplementary Text and Figures

Supplementary Discussion, Supplementary Methods, Supplementary Figures 1–5 and Supplementary Tables 1–5 (PDF 487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, W., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227–229 (2013). https://doi.org/10.1038/nbt.2501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2501

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing