Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes

Abstract

Lysosomal storage diseases are treated with human lysosomal enzymes produced in mammalian cells. Such enzyme therapeutics contain relatively low levels of mannose-6-phosphate, which is required to target them to the lysosomes of patient cells. Here we describe a method for increasing mannose-6-phosphate modification of lysosomal enzymes produced in yeast. We identified a glycosidase from C. cellulans that 'uncaps' N-glycans modified by yeast-type mannose-Pi-6-mannose to generate mammalian-type N-glycans with a mannose-6-phosphate substitution. Determination of the crystal structure of this glycosidase provided insight into its substrate specificity. We used this uncapping enzyme together with α-mannosidase to produce in yeast a form of the Pompe disease enzyme α-glucosidase rich in mannose-6-phosphate. Compared with the currently used therapeutic version, this form of α-glucosidase was more efficiently taken up by fibroblasts from Pompe disease patients, and it more effectively reduced cardiac muscular glycogen storage in a mouse model of the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Project, technology concepts and strategy.
Figure 2: Y.lipolytica N-glycan analysis and CcGH92_4 and CcGH92_5 activity and substrate specificity.
Figure 3: Structure of the C. cellulans CcGH92_5 GH92 domain.
Figure 4: Enzyme uptake by Pompe disease patient fibroblasts and therapeutic activity in Pompe disease mouse model.

Similar content being viewed by others

Accession codes

Primary accessions

EMBL/GenBank/DDBJ

European Nucleotide Archive

NCBI Reference Sequence

Protein Data Bank

References

  1. Futerman, A.H. & van Meer, G. The cell biology of lysosomal storage disorders. Nat. Rev. Mol. Cell Biol. 5, 554–565 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Desnick, R.J. & Schuchman, E.H. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat. Rev. Genet. 3, 954–966 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Pohl, S., Marschner, K., Storch, S. & Braulke, T. Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases. Biol. Chem. 390, 521–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Dahms, N.M., Lobel, P. & Kornfeld, S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J. Biol. Chem. 264, 12115–12118 (1989).

    CAS  PubMed  Google Scholar 

  5. Hille-Rehfeld, A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim. Biophys. Acta 1241, 177–194 (1995).

    Article  PubMed  Google Scholar 

  6. Chiba, Y. et al. Production in yeast of α-galactosidase A, a lysosomal enzyme applicable to enzyme replacement therapy for Fabry disease. Glycobiology 12, 821–828 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Braulke, T., Gartung, C., Hasilik, A. & von Figura, K. Is movement of mannose 6-phosphate-specific receptor triggered by binding of lysosomal enzymes? J. Cell Biol. 104, 1735–1742 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Dahms, N.M. & Hancock, M.K. P-type lectins. Biochim. Biophys. Acta 1572, 317–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Breuer, P. et al. Serine phosphorylation site of the 46-kDa mannose 6-phosphate receptor is required for transport to the plasma membrane in Madin-Darby canine kidney and mouse fibroblast cells. Mol. Biol. Cell 8, 567–576 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beck, M. New therapeutic options for lysosomal storage disorders: enzyme replacement, small molecules and gene therapy. Hum. Genet. 121, 1–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Zhu, Y. et al. Carbohydrate-remodelled acid α-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem. J. 389, 619–628 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Odani, T., Shimma, Y., Tanaka, A. & Jigami, Y. Cloning and analysis of the MNN4 gene required for phosphorylation of N-linked oligosaccharides in Saccharomyces cerevisiae. Glycobiology 6, 805–810 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Jigami, Y. & Odani, T. Mannosylphosphate transfer to yeast mannan. Biochim. Biophys. Acta 1426, 335–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Ballou, D.L. Genetic control of yeast mannan structure: mapping genes mnn2 and mnn4 in Saccharomyces cerevisiae. J. Bacteriol. 123, 616–619 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Akeboshi, H. et al. Production of human β-hexosaminidase A with highly phosphorylated N-glycans by the overexpression of the Ogataea minuta MNN4 gene. Glycobiology 19, 1002–1009 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. York, S.J., Arneson, L.S., Gregory, W.T., Dahms, N.M. & Kornfeld, S. The Rate of Internalization of the mannose 6-phosphate/insulin-like growth factor II receptor is enhanced by multivalent ligand binding. J. Biol. Chem. 274, 1164–1171 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Struhl, K., Stinchcomb, D.T., Scherer, S. & Davis, R.W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76, 1035–1039 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scott, J.H. & Schekman, R. Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. J. Bacteriol. 142, 414–423 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwientek, P., Szczepanowski, R., Rückert, C., Stoye, J. & Pühler, A. Sequencing of high G +°C microbial genomes using the ultrafast pyrosequencing technology. J. Biotechnol. 155, 68–77 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Laroy, W., Contreras, R. & Callewaert, N. Glycome mapping on DNA sequencing equipment. Nat. Protoc. 1, 397–405 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Takashiba, M., Chiba, Y. & Jigami, Y. Identification of phosphorylation sites in N-linked glycans by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 78, 5208–5213 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, Y. et al. Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat. Chem. Biol. 6, 125–132 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, K. et al. A biochemical and pharmacological comparison of enzyme replacement therapies for the glycolipid storage disorder Fabry disease. Glycobiology 13, 305–313 (2003).

    Article  PubMed  Google Scholar 

  24. Bijvoet, A.G. et al. Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease. Hum. Mol. Genet. 7, 53–62 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Zhu, Y. et al. Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol. Ther. 17, 954–963 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Metcalfe, G. & Brown, M.E. Nitrogen fixation by new species of Nocardia. J. Gen. Microbiol. 17, 567–572 (1957).

    Article  CAS  PubMed  Google Scholar 

  27. Schumann, P., Weiss, N. & Stackebrandt, E. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51, 1007–1010 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Fickers, P. et al. Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet. Biol. 42, 264–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. De Pourcq, K. et al. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2. Microb. Cell Fact. 11, 53 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vervecken, W. et al. In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl. Environ. Microbiol. 70, 2639–2646 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barth, G. & Gaillardin, C. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol. Rev. 19, 219–237 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Fickers, P., Le Dall, M.T., Gaillardin, C., Thonart, P. & Nicaud, J.M. New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J. Microbiol. Methods 55, 727–737 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Miura, M., Hirose, M., Miwa, T., Kuwae, S. & Ohi, H. Cloning and characterization in Pichia pastoris of PNO1 gene required for phosphomannosylation of N-linked oligosaccharides. Gene 324, 129–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Terwilliger, T.C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  37. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17, 490–519 (1996).

    Article  CAS  Google Scholar 

  39. Morris, G.M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Trott, O. & Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Reuser, A.J. et al. Uptake and stability of human and bovine acid alpha-glucosidase in cultured fibroblasts and skeletal muscle cells from glycogenosis type II patients. Exp. Cell Res. 155, 178–189 (1984).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by an R&D grant from IWT-Flanders (projects 080775 and 110379), the Marie Curie Excellence Grant MEXT-014292 under EU Framework Program 6 and by grant G.0.327.11.N.10 of FWO-Vlaanderen. P.T. holds a doctor-assistant position at Ghent University. C.D.V. holds a fellowship of the Institute for the Advancement of Scientific and Technological Research in Industry (IWT). H.R. is supported by VIB grant PRJ9 and the Odysseus program of the FWO-Vlaanderen. We thank J.-M. Nicaud (CNRS-INRA-INAPG UMR2585, France) for donating Y. lipolytica Po1d lnuga, A. Reuser for providing GAA KO mice and TNO Triskelion for executing the in vivo part of the mouse studies. We acknowledge M. Zawisza, D. Bracke, T. Herman, H. Van Put, S. Poiz and I. Dewerte for their excellent technical assistance during the project and thank the Protein Service Facility (Y. Leoen and J. Haustraete) for their assistance, as well as Y.-C. Lin for handling the genome sequencing data. We dedicate this paper to the memory of the late Prof. Dr. Yoshifumi Jigami, one of the pioneers in glyco-engineering of yeasts.

Author information

Authors and Affiliations

Authors

Contributions

P.T.: Y. lipolytica MNN4 strain generation, experiments leading to the discovery of enzyme activities in C. cellulans, production of these in E. coli and characterization and thermostability assays. E.B.: CcGH92_5 purification and structure determination. K.P.: CcGH92_4 and CcGH92_5 characterization and enzyme process development, GAA enzyme characterization. C.D.V.: P. pastoris PNO1 and GLA strain generation and characterization. G.P.: cell uptake assays, mouse study bio-analysis. W.N.: docking studies. J.S.: GAA purification, mouse study statistics. F.F.: fermentation, GAA strain generation. P.H.: bio-informatics analysis of CcGH92_5 sequence homologs. S.T.: fermentation development for GAA and CcGH92_4 and CcGH92_5. S.G.: glycan analysis. A.V.H.: Y. lipolytica MNN4 strain generation, production of C. cellulans enzymes in E. coli and thermostability assays. A.V.: Y. lipolytica MNN4 & GAA strain generation. W.V.: Y. lipolytica och1 and MNN4 strain generation, scientific supervision at Oxyrane. H.R.: supervision and analysis of CcGH92 structure determination. N.C.: project initiation and scientific supervision. N.C., P.T., K.P., G.P., C.D.V., W.V. and H.R. co-wrote the manuscript.

Corresponding authors

Correspondence to Wouter Vervecken, Han Remaut or Nico Callewaert.

Ethics declarations

Competing interests

N.C., W.V., P.T., K.P., A.V., G.P, S.G., J.S. and H.R. are named inventors on patent applications claiming use of the technology described in this publication. W.V., A.V., G.P., S.G. S.T., F.F., J.S. and K.P. hold stock options in Oxyrane UK, a company which develops biopharmaceuticals based partially on technology resulting from the work reported here.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Results, Supplementary Tables 1–5 and Supplementary Figures 1–12 (PDF 6884 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiels, P., Baranova, E., Piens, K. et al. A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes. Nat Biotechnol 30, 1225–1231 (2012). https://doi.org/10.1038/nbt.2427

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing