Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacogenomics in clinical practice and drug development

A Corrigendum to this article was published on 07 December 2012

This article has been updated

Abstract

Genome-wide association studies (GWAS) of responses to drugs, including clopidogrel, pegylated-interferon and carbamazepine, have led to the identification of specific patient subgroups that benefit from therapy. However, the identification and replication of common sequence variants that are associated with either efficacy or safety for most prescription medications at odds ratios (ORs) >3.0 (equivalent to >300% increased efficacy or safety) has yet to be translated to clinical practice. Although some of the studies have been completed, the results have not been incorporated into therapy, and a large number of commonly used medications have not been subject to proper pharmacogenomic analysis. Adoption of GWAS, exome or whole genome sequencing by drug development and treatment programs is the most striking near-term opportunity for improving the drug candidate pipeline and boosting the efficacy of medications already in use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembling cohorts for drug-response GWAS.
Figure 2: Current and future strategies for treatment with TNF-α blockers.

Similar content being viewed by others

Change history

  • 07 December 2012

    In the version of this article initially published online and in print, the funders were not acknowledged. The funding statement should have read 'EJT was funded by NIH/NCATS TR000109'. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Allison, M. Reinventing clinical trials. Nat. Biotechnol. 30, 41–49 (2012).

    Article  CAS  Google Scholar 

  2. Mullard, A. Partnering between pharma peers on the rise. Nat. Rev. Drug Discov. 10, 561–562 (2011).

    Article  Google Scholar 

  3. Norman, T.C., Bountra, C., Edwards, A.M., Yamamoto, K.R. & Friend, S.H. Leveraging crowdsourcing to facilitate the discovery of new medicines. Sci. Transl. Med. 3, 88mr1 (2011).

    PubMed  Google Scholar 

  4. Pollack, A. Drug makers join efforts in research. The New York Times, B3 (2012).

  5. Hindorff, L.A. et al. A catalog of published genome-wide association studies. http://www.genome.gov/gwastudies (accessed 22 October 2012)

  6. Giacomini, K.M. et al. Pharmacogenomics and patient care: one size does not fit all. Sci Transl Med 4, 153ps118 (2012).

    Article  Google Scholar 

  7. Pirmohamed, M. Pharmacogenetics: past, present and future. Drug Discov. Today 16, 852–861 (2011).

    Article  CAS  Google Scholar 

  8. Nelson, M.R. et al. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337, 100–104 (2012).

    Article  CAS  Google Scholar 

  9. Ramirez, A.H. et al. Novel rare variants in congenital cardiac arrhythmia genes are frequent in drug-induced torsades de pointes. Pharmacogenomics J. advance online publication, doi:10.1038/tpj.2012.14 (15 May 2012).

    Article  Google Scholar 

  10. Rosen, H.R. Chronic hepatitis C infection. N. Engl. J. Med. 364, 2429–2438 (2011).

    Article  CAS  Google Scholar 

  11. Soriano, V. et al. Pharmacogenetics of hepatitis C. J. Antimicrob. Chemother. 67, 523–529 (2012).

    Article  CAS  Google Scholar 

  12. McHutchison, J.G. et al. Peginterferon alfa-2b or alfa-2a with ribavirin for treatment of hepatitis C infection. N. Engl. J. Med. 361, 580–593 (2009).

    Article  CAS  Google Scholar 

  13. Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461, 399–401 (2009).

    Article  CAS  Google Scholar 

  14. Tanaka, Y. et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41, 1105–1109 (2009).

    Article  CAS  Google Scholar 

  15. Suppiah, V. et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat. Genet. 41, 1100–1104 (2009).

    Article  CAS  Google Scholar 

  16. Rauch, A. et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138, 1338–1345, 1345 e1331–1337 (2010).

    Article  CAS  Google Scholar 

  17. Veldt, B.J. et al. Recipient IL28B polymorphism is an important independent predictor of posttransplant diabetes mellitus in liver transplant patients with chronic hepatitis C. Am. J. Transplant. 12, 737–744 (2012).

    Article  CAS  Google Scholar 

  18. Clark, P.J., Thompson, A.J. & McHutchison, J.G. IL28B genomic-based treatment paradigms for patients with chronic hepatitis C infection: the future of personalized HCV therapies. Am. J. Gastroenterol. 106, 38–45 (2011).

    Article  CAS  Google Scholar 

  19. Thomas, D.L. et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461, 798–801 (2009).

    Article  CAS  Google Scholar 

  20. Topol, E.J. & Teirstein, P.S. Textbook of Interventional Cardiology 6th edn. (Elsevier Saunders, 2011).

    Google Scholar 

  21. Shuldiner, A.R. et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. J. Am. Med. Assoc. 302, 849–857 (2009).

    Article  CAS  Google Scholar 

  22. Mega J.L. et al. Dosing clopidogrel based on cyp2c19 genotype and the effect on platelet reactivity in patients with stable cardiovascular disease. J. Am. Med. Assoc. 306, 2221–2228 (2011).

    Article  CAS  Google Scholar 

  23. Roberts, J.D. et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet 379, 1705–1711 (2012).

    Article  CAS  Google Scholar 

  24. Patay, B.A. & Topol, E.J. The unmet need of education in genomic medicine. Am. J. Med. 125, 5–6 (2012).

    Article  Google Scholar 

  25. Moore, T.J., Furberg, C.D. & Cohen, M.R. Anticoagulants the leading reported drug risk in 2011. QuarterWatch, Monitoring FDA MedWatch Reports (Institute for Safe Medication Practices, 2012). http://www.ismp.org/quarterwatch/pdfs/2011Q4.pdf (accessed 22 October 2012)

    Google Scholar 

  26. Klein, T.E. et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360, 753–764 (2009).

    Article  CAS  Google Scholar 

  27. Epstein, R.S. et al. Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J. Am. Coll. Cardiol. 55, 2804–2812 (2010).

    Article  CAS  Google Scholar 

  28. Anderson, J.L. et al. A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation 125, 1997–2005 (2012).

    Article  CAS  Google Scholar 

  29. Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin. Pharmacol. Ther. 83, 273–280 (2008).

    Article  CAS  Google Scholar 

  30. Zhou, K. et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat. Genet. 43, 117–120 (2011).

    Article  CAS  Google Scholar 

  31. Tantisira, K.G. et al. Genome-wide association identifies the T gene as a novel asthma pharmacogenetic locus. Am. J. Respir. Crit. Care Med. 185, 1286–1291 (2012).

    Article  CAS  Google Scholar 

  32. Tantisira, K.G. et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N. Engl. J. Med. 365, 1173–1183 (2011).

    Article  CAS  Google Scholar 

  33. Himes, B.E. et al. Genome-Wide Association Analysis in Asthma Subjects Identifies SPATS2L as a Novel Bronchodilator Response Gene. PLoS Genet. 8, e1002824 (2012).

    Article  CAS  Google Scholar 

  34. Jonsson, T. et al. A mutation in APP protects against Alzheimer/'s disease and age-related cognitive decline. Nature 488, 96–99 (2012).

    Article  CAS  Google Scholar 

  35. Smith, D.A. & Schmid, E.F. Drug withdrawals and the lessons within. Curr. Opin. Drug Discov. Devel. 9, 38–46 (2006).

    CAS  PubMed  Google Scholar 

  36. Lynch, T. & Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician 76, 391–396 (2007).

    PubMed  Google Scholar 

  37. Daly, A.K. Using genome-wide association studies to identify genes important in serious adverse drug reactions. Annu. Rev. Pharmacol. Toxicol. 52, 21–35 (2012).

    Article  CAS  Google Scholar 

  38. Lee, W.M. Drug-induced hepatotoxicity. N. Engl. J. Med. 349, 474–485 (2003).

    Article  CAS  Google Scholar 

  39. Kindmark, A. et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. 8, 186–195 (2008).

    Article  CAS  Google Scholar 

  40. Daly, A.K. et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat. Genet. 41, 816–819 (2009).

    Article  CAS  Google Scholar 

  41. Lucena, M.I. et al. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology 141, 338–347 (2011).

    Article  CAS  Google Scholar 

  42. Roujeau, J.C. Clinical heterogeneity of drug hypersensitivity. Toxicology 209, 123–129 (2005).

    Article  CAS  Google Scholar 

  43. McCormack, M. et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364, 1134–1143 (2011).

    Article  CAS  Google Scholar 

  44. Chen, P. et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N. Engl. J. Med. 364, 1126–1133 (2011).

    Article  CAS  Google Scholar 

  45. Link, E. et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

    Article  CAS  Google Scholar 

  46. Wilke, R.A. et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin. Pharmacol. Ther. 92, 112–117 (2012).

    Article  CAS  Google Scholar 

  47. Furberg, C.D. & Pitt, B. Withdrawal of cerivastatin from the world market. Curr. Control. Trials Cardiovasc. Med. 2, 205–207 (2001).

    Article  Google Scholar 

  48. Zhang, W., Roederer, M.W., Chen, W.Q., Fan, L. & Zhou, H.H. Pharmacogenetics of drugs withdrawn from the market. Pharmacogenomics 13, 223–231 (2012).

    Article  CAS  Google Scholar 

  49. Doshi, P., Jefferson, T. & Del Mar, C. The imperative to share clinical study reports: recommendations from the Tamiflu experience. PLoS Med. 9, e1001201 (2012).

    Article  Google Scholar 

  50. Schnitzer, T.J. et al. Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and Gastrointestinal Event Trial (TARGET), reduction in ulcer complications: randomised controlled trial. Lancet 364, 665–674 (2004).

    Article  CAS  Google Scholar 

  51. Singer, J.B. et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat. Genet. 42, 711–714 (2010).

    Article  CAS  Google Scholar 

  52. Aithal, G.P. & Daly, A.K. Preempting and preventing drug-induced liver injury. Nat. Genet. 42, 650–651 (2010).

    Article  CAS  Google Scholar 

  53. Shih, J.Y., Gow, C.H. & Yang, P.C. EGFR mutation conferring primary resistance to gefitinib in non-small-cell lung cancer. N. Engl. J. Med. 353, 207–208 (2005).

    Article  CAS  Google Scholar 

  54. Geyer, C.E. et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 355, 2733–2743 (2006).

    Article  CAS  Google Scholar 

  55. Berry, D.A. Adaptive clinical trials in oncology. Nat. Rev. Clin. Oncol. 9, 199–207 (2012).

    Article  CAS  Google Scholar 

  56. Barker, A.D. et al. I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin. Pharmacol. Ther. 86, 97–100 (2009).

    Article  CAS  Google Scholar 

  57. Ramsey, B.W. et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365, 1663–1672 (2011).

    Article  CAS  Google Scholar 

  58. Sarepta Therapeutics announces eteplirsen meets primary endpoint of increased novel dystrophin. http://finance.yahoo.com/news/sarepta-therapeutics-announces-eteplirsen-meets-110000135.html Accessed 16 October 2012.

  59. Belluck, P. New drug trial seeks to stop Alzheimer's before it starts. The New York Times, May 16, 2012.

    Google Scholar 

  60. Pharmacogenomics Working Party (PGWP). (European Medicines Agency, 2011). http://bit.ly/OWZHTh (accessed 22 October 2012)

  61. US Department of Health and Human Services, US Food and Drug Administration, Center for Drug Evaluation and Research & Center for Biologics Evaluation and Research. E16 Biomarkers Related to Drug or Biotechnology Product Development: Context, Structure, and Format of Qualification Submissions (International Conference on Harmonisation, 2011). http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM267449.pdf (accessed 22 October 2012)

  62. US Department of Health and Human Services, US Food and Drug Administration. Voluntary exploratory data submissions (VXDS). http://www.fda.gov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083673.htm (accessed 22 October 2012)

  63. Stanek, E.J. et al. Adoption of pharmacogenomic testing by US physicians: results of a nationwide survey. Clin. Pharmacol. Ther. 91, 450–458 (2012).

    Article  CAS  Google Scholar 

  64. Topol, E.J. Pharmacy benefit managers, pharmacies, and pharmacogenomic testing: prescription for progress? Sci. Transl. Med. 2, 44cm22 (2010).

    PubMed  Google Scholar 

  65. Takeuchi, F. et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 5, e1000433 (2009).

    Article  Google Scholar 

  66. Cooper, G.M. et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112, 1022–1027 (2008).

    Article  CAS  Google Scholar 

  67. Turner, S.T. et al. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic. Hypertension 52, 359–365 (2008).

    Article  CAS  Google Scholar 

  68. Turner, S.T. et al. Genomic association analysis identifies multiple loci influencing antihypertensive response to an angiotensin II receptor blocker. Hypertension 59, 1204–1211 (2012).

    Article  CAS  Google Scholar 

  69. Paré, G. et al. RELY-Genetics: Genetic determinants of dabigatran plasma levels and their relation to clinical response at the European Society of Cardiology 2012 Congress, Munich, August 25-29, 2012). http://spo.escardio.org/SessionDetails.aspx?id=398932#.UIWYgGl25GE (accessed October 22, 2012)

  70. Kindmark, A. et al. Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. 8, 186–195 (2008).

    Article  CAS  Google Scholar 

  71. McCormack, M. et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364, 1134–1143 (2011).

    Article  CAS  Google Scholar 

  72. Ozeki, T. et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum. Mol. Genet. 20, 1034–1041 (2011).

    Article  CAS  Google Scholar 

  73. Fellay, J. et al. ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature 464, 405–408 (2010).

    Article  CAS  Google Scholar 

  74. Trevino, L.R. et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J. Clin. Oncol. 27, 5972–5978 (2009).

    Article  CAS  Google Scholar 

  75. Byun, E. et al. Genome-wide pharmacogenomic analysis of the response to interferon beta therapy in multiple sclerosis. Arch. Neurol. 65, 337–344 (2008).

    Article  Google Scholar 

  76. Liu, C. et al. Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis. Mol. Med. 14, 575–581 (2008).

    Article  CAS  Google Scholar 

  77. Mick, E., Neale, B., Middleton, F.A., McGough, J.J. & Faraone, S.V. Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 147B, 1412–1418 (2008).

    Article  CAS  Google Scholar 

  78. Lavedan, C. et al. Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol. Psychiatry 14, 804–819 (2009).

    Article  CAS  Google Scholar 

  79. Ising, M. et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch. Gen. Psychiatry 66, 966–975 (2009).

    Article  CAS  Google Scholar 

  80. Garriock, H.A. et al. A genomewide association study of citalopram response in major depressive disorder. Biol. Psychiatry 67, 133–138 (2010).

    Article  CAS  Google Scholar 

  81. van Vollenhoven, R.F. Switching between anti-tumour necrosis factors: trying to get a handle on a complex issue. Ann. Rheum. Dis. 66, 849–851 (2007).

    Article  CAS  Google Scholar 

  82. Bonafede, M.M., Gandra, S.R., Watson, C., Princic, N. & Fox, K.M. Cost per treated patient for etanercept, adalimumab, and infliximab across adult indications: a claims analysis. Adv. Ther. 29, 234–248 (2012).

    Article  Google Scholar 

  83. Krintel, S.B. et al. Investigation of single nucleotide polymorphisms and biological pathways associated with response to TNFalpha inhibitors in patients with rheumatoid arthritis. Pharmacogenet. Genomics 22, 577–589 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E.J.T. was funded by the National Institutes of Health/National Center for Advancing Translational Sciences TR000109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J Topol.

Ethics declarations

Competing interests

E.J.T. is a consultant for Quest Diagnostics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, A., Topol, E. Pharmacogenomics in clinical practice and drug development. Nat Biotechnol 30, 1117–1124 (2012). https://doi.org/10.1038/nbt.2424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2424

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing