The expanding scope of DNA sequencing

Subjects

Abstract

In just seven years, next-generation technologies have reduced the cost and increased the speed of DNA sequencing by four orders of magnitude, and experiments requiring many millions of sequencing reads are now routine. In research, sequencing is being applied not only to assemble genomes and to investigate the genetic basis of human disease, but also to explore myriad phenomena in organismic and cellular biology. In the clinic, the utility of sequence data is being intensively evaluated in diverse contexts, including reproductive medicine, oncology and infectious disease. A recurrent theme in the development of new sequencing applications is the creative 'recombination' of existing experimental building blocks. However, there remain many potentially high-impact applications of next-generation DNA sequencing that are not yet fully realized.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Where we are headed: a road map of sequencing science.
Figure 2: Structure of sequencing experiments.
Figure 3: How we are getting there: a subway map of sequencing technology.

References

  1. 1

    Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    CAS  PubMed  Google Scholar 

  2. 2

    Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    CAS  PubMed  Google Scholar 

  4. 4

    Wetterstrand, K.A. DNA sequencing costs: data from the NHGRI large-scale genome sequencing program. http://www.genome.gov/sequencingcosts/. Accessed 1 October 2012.

  5. 5

    Shendure, J., Mitra, R.D., Varma, C. & Church, G.M. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).

    CAS  PubMed  Google Scholar 

  6. 6

    Fuller, C.W. et al. The challenges of sequencing by synthesis. Nat. Biotechnol. 27, 1013–1023 (2009).

    CAS  PubMed  Google Scholar 

  7. 7

    Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Metzker, M.L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    CAS  PubMed  Google Scholar 

  9. 9

    Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Genome 10K Community of Scientists. Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J. Hered. 100, 659–674 (2009).

  11. 11

    Pevzner, P.A., Tang, H. & Waterman, M.S. An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA 98, 9748–9753 (2001).

    CAS  PubMed  Google Scholar 

  12. 12

    Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA 108, 1513–1518 (2011).

    CAS  PubMed  Google Scholar 

  13. 13

    Alkan, C., Sajjadian, S. & Eichler, E.E. Limitations of next-generation genome sequence assembly. Nat. Methods 8, 61–65 (2011).

    CAS  PubMed  Google Scholar 

  14. 14

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Kitzman, J.O. et al. Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat. Biotechnol. 29, 59–63 (2011).

    CAS  PubMed  Google Scholar 

  17. 17

    Peters, B.A. et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 487, 190–195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Fan, H.C., Wang, J., Potanina, A. & Quake, S.R. Whole-genome molecular haplotyping of single cells. Nat. Biotechnol. 29, 51–57 (2011).

    CAS  PubMed  Google Scholar 

  19. 19

    Ma, L. et al. Direct determination of molecular haplotypes by chromosome microdissection. Nat. Methods 7, 299–301 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Ng, S.B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Choi, M. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl. Acad. Sci. USA 106, 19096–19101 (2009).

    CAS  PubMed  Google Scholar 

  22. 22

    Vissers, L.E. et al. A de novo paradigm for mental retardation. Nat. Genet. 42, 1109–1112 (2010).

    CAS  PubMed  Google Scholar 

  23. 23

    O'Roak, B.J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Girard, S.L. et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat. Genet. 43, 860–863 (2011).

    CAS  PubMed  Google Scholar 

  25. 25

    Manolio, T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Kohane, I.S. & Shendure, J. What's a genome worth? Sci. Transl. Med. 4, 133fs113 (2012).

    Google Scholar 

  27. 27

    Roberts, N.J. et al. The predictive capacity of personal genome sequencing. Sci. Transl. Med. 4, 133ra158 (2012).

    Google Scholar 

  28. 28

    Worthey, E.A. et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet. Med. 13, 255–262 (2011).

    PubMed  Google Scholar 

  29. 29

    Bainbridge, M.N. et al. Whole-genome sequencing for optimized patient management. Sci. Transl. Med. 3, 87re83 (2011).

    Google Scholar 

  30. 30

    Bell, C.J. et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl. Med. 3, 65ra64 (2011).

    Google Scholar 

  31. 31

    Fan, H.C., Blumenfeld, Y.J., Chitkara, U., Hudgins, L. & Quake, S.R. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc. Natl. Acad. Sci. USA 105, 16266–16271 (2008).

    CAS  PubMed  Google Scholar 

  32. 32

    Chiu, R.W. et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc. Natl. Acad. Sci. USA 105, 20458–20463 (2008).

    CAS  PubMed  Google Scholar 

  33. 33

    Kitzman, J.O. et al. Noninvasive whole-genome sequencing of a human fetus. Sci. Transl. Med. 4, 137ra176 (2012).

    Google Scholar 

  34. 34

    Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Johnson, D.S., Mortazavi, A., Myers, R.M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Hesselberth, J.R. et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat. Methods 6, 283–289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Lickwar, C.R., Mueller, F., Hanlon, S.E., McNally, J.G. & Lieb, J.D. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484, 251–255 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    CAS  PubMed  Google Scholar 

  40. 40

    Montgomery, S.B. et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464, 773–777 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Churchman, L.S. & Weissman, J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    CAS  PubMed  Google Scholar 

  42. 42

    Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Li, J.B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).

    CAS  Google Scholar 

  45. 45

    Sanford, J.R. et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 19, 381–394 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Licatalosi, D.D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Ingolia, N.T., Ghaemmaghami, S., Newman, J.R. & Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Howorka, S. & Siwy, Z.S. Nanopores as protein sensors. Nat. Biotechnol. 30, 506–507 (2012).

    CAS  PubMed  Google Scholar 

  50. 50

    Tessler, L.A., Reifenberger, J.G. & Mitra, R.D. Protein quantification in complex mixtures by solid phase single-molecule counting. Anal. Chem. 81, 7141–7148 (2009).

    CAS  PubMed  Google Scholar 

  51. 51

    Boyd, S.D. et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci. Transl. Med. 1, 12ra23 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. 52

    Freeman, J.D., Warren, R.L., Webb, J.R., Nelson, B.H. & Holt, R.A. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res. 19, 1817–1824 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Wang, C. et al. High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc. Natl. Acad. Sci. USA 107, 1518–1523 (2010).

    CAS  PubMed  Google Scholar 

  54. 54

    Robins, H.S. et al. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood 114, 4099–4107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Price, D.A. et al. Public clonotype usage identifies protective Gag-specific CD8+ T cell responses in SIV infection. J. Exp. Med. 206, 923–936 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Ley, T.J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Welch, J.S. et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. J. Am. Med. Assoc. 305, 1577–1584 (2011).

    CAS  Google Scholar 

  59. 59

    Jones, S.J. et al. Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol. 11, R82 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Leary, R.J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).

    PubMed  PubMed Central  Google Scholar 

  61. 61

    Li, M. et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol. 27, 858–863 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. 62

    Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Grice, E.A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Gill, S.R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Gardy, J.L. et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N. Engl. J. Med. 364, 730–739 (2011).

    CAS  PubMed  Google Scholar 

  66. 66

    Harris, S.R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Codoner, F.M. et al. Added value of deep sequencing relative to population sequencing in heavily pre-treated HIV-1-infected subjects. PLoS ONE 6, e19461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Zagordi, O., Klein, R., Daumer, M. & Beerenwinkel, N. Error correction of next-generation sequencing data and reliable estimation of HIV quasispecies. Nucleic Acids Res. 38, 7400–7409 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    CAS  Google Scholar 

  70. 70

    Cullen, K.E., Kladde, M.P. & Seyfred, M.A. Interaction between transcription regulatory regions of prolactin chromatin. Science 261, 203–206 (1993).

    CAS  PubMed  Google Scholar 

  71. 71

    Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Fullwood, M.J. et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58–64 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Berger, M.F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Hansen, R.S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl. Acad. Sci. USA 107, 139–144 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    ENCODE Project Consortium et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

  77. 77

    Gerstein, M.B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Gore, A. et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 471, 63–67 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Baranzini, S.E. et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464, 1351–1356 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Green, R.E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Schacherer, J., Shapiro, J.A., Ruderfer, D.M. & Kruglyak, L. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458, 342–345 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Hess, M. et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467 (2011).

    CAS  PubMed  Google Scholar 

  83. 83

    Kao, K.C. & Sherlock, G. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat. Genet. 40, 1499–1504 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Gresham, D. et al. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet. 4, e1000303 (2008).

    PubMed  PubMed Central  Google Scholar 

  85. 85

    Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005).

    CAS  PubMed  Google Scholar 

  86. 86

    Logan, A.C. et al. High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc. Natl. Acad. Sci. USA 108, 21194–21199 (2011).

    CAS  PubMed  Google Scholar 

  87. 87

    Bassik, M.C. et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat. Methods 6, 443–445 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  Google Scholar 

  89. 89

    Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326, 257–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Goodman, A.L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Gallagher, L.A., Shendure, J. & Manoil, C. Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. MBio 2, e00315–e00310 (2011).

    PubMed  PubMed Central  Google Scholar 

  92. 92

    Carette, J.E. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29, 542–546 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Patwardhan, R.P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Fowler, D.M. et al. High-resolution mapping of protein sequence-function relationships. Nat. Methods 7, 741–746 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Patwardhan, R.P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  Google Scholar 

  98. 98

    Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Pitt, J.N. & Ferre-D'Amare, A.R. Rapid construction of empirical RNA fitness landscapes. Science 330, 376–379 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Yu, Z. et al. Activators of the glutamate-dependent acid resistance system alleviate deleterious effects of YidC depletion in Escherichia coli. J. Bacteriol. 193, 1308–1316 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Gertz, J., Siggia, E.D. & Cohen, B.A. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457, 215–218 (2009).

    CAS  PubMed  Google Scholar 

  104. 104

    Nett, J.H. et al. A combinatorial genetic library approach to target heterologous glycosylation enzymes to the endoplasmic reticulum or the Golgi apparatus of Pichia pastoris. Yeast 28, 237–252 (2011).

    CAS  PubMed  Google Scholar 

  105. 105

    Di Niro, R. et al. Rapid interactome profiling by massive sequencing. Nucleic Acids Res. 38, e110 (2010).

    PubMed  PubMed Central  Google Scholar 

  106. 106

    Baryshnikova, A. et al. Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat. Methods 7, 1017–1024 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405–410 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Turner, E.H., Lee, C., Ng, S.B., Nickerson, D.A. & Shendure, J. Massively parallel exon capture and library-free resequencing across 16 genomes. Nat. Methods 6, 315–316 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Dahl, F., Gullberg, M., Stenberg, J., Landegren, U. & Nilsson, M. Multiplex amplification enabled by selective circularization of large sets of genomic DNA fragments. Nucleic Acids Res. 33, e71 (2005).

    PubMed  PubMed Central  Google Scholar 

  110. 110

    Bashiardes, S. et al. Direct genomic selection. Nat. Methods 2, 63–69 (2005).

    CAS  PubMed  Google Scholar 

  111. 111

    Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868–5877 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Armour, C.D. et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat. Methods 6, 647–649 (2009).

    CAS  PubMed  Google Scholar 

  115. 115

    Levin, J.Z. et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat. Methods 7, 709–715 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Song, C.X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68–72 (2011).

    CAS  PubMed  Google Scholar 

  117. 117

    Findeiss, S., Langenberger, D., Stadler, P.F. & Hoffmann, S. Traces of post-transcriptional RNA modifications in deep sequencing data. Biol. Chem. 392, 305–313 (2011).

    CAS  PubMed  Google Scholar 

  118. 118

    Zhang, C. & Darnell, R.B. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol. 29, 607–614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Mamanova, L. et al. FRT-seq: amplification-free, strand-specific transcriptome sequencing. Nat. Methods 7, 130–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 11, R119 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Hiatt, J.B., Patwardhan, R.P., Turner, E.H., Lee, C. & Shendure, J. Parallel, tag-directed assembly of locally derived short sequence reads. Nat. Methods 7, 119–122 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10, 387–406 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125

    Blencowe, B.J., Ahmad, S. & Lee, L.J. Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev. 23, 1379–1386 (2009).

    CAS  PubMed  Google Scholar 

  126. 126

    Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Loman, N.J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30, 434–439 (2012).

    CAS  Google Scholar 

  128. 128

    Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Deng, J. et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol. 27, 353–360 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Ponts, N. et al. Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res. 20, 228–238 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133

    Ribeiro, F. et al. Finished bacterial genomes from shotgun sequence data. Genome Res. Advance online

  134. 134

    Larsson, C. et al. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat. Methods 1, 227–232 (2004).

    CAS  PubMed  Google Scholar 

  135. 135

    Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    PubMed  PubMed Central  Google Scholar 

  136. 136

    Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    Yu, H. et al. Next-generation sequencing to generate interactome datasets. Nat. Methods 8, 478–480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Botvinnik, A., Wichert, S.P., Fischer, T.M. & Rossner, M.J. Integrated analysis of receptor activation and downstream signaling with EXTassays. Nat. Methods 7, 74–80 (2010).

    CAS  PubMed  Google Scholar 

  139. 139

    Carlson, C.A. et al. Decoding cell lineage from acquired mutations using arbitrary deep sequencing. Nat. Methods 9, 78–80 (2012).

    CAS  Google Scholar 

  140. 140

    Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Solomon and L. Gaffney of the Broad Institute for assistance with the design and preparation of figures; B. Wong and S. Arbesman for input on figure design; A.P. Aiden for valuable comments; and members of the Shendure lab and of the Laboratory at Large for discussions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jay Shendure or Erez Lieberman Aiden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shendure, J., Aiden, E. The expanding scope of DNA sequencing. Nat Biotechnol 30, 1084–1094 (2012). https://doi.org/10.1038/nbt.2421

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing