Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The expanding scope of DNA sequencing

Subjects

Abstract

In just seven years, next-generation technologies have reduced the cost and increased the speed of DNA sequencing by four orders of magnitude, and experiments requiring many millions of sequencing reads are now routine. In research, sequencing is being applied not only to assemble genomes and to investigate the genetic basis of human disease, but also to explore myriad phenomena in organismic and cellular biology. In the clinic, the utility of sequence data is being intensively evaluated in diverse contexts, including reproductive medicine, oncology and infectious disease. A recurrent theme in the development of new sequencing applications is the creative 'recombination' of existing experimental building blocks. However, there remain many potentially high-impact applications of next-generation DNA sequencing that are not yet fully realized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Where we are headed: a road map of sequencing science.
Figure 2: Structure of sequencing experiments.
Figure 3: How we are getting there: a subway map of sequencing technology.

References

  1. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Wetterstrand, K.A. DNA sequencing costs: data from the NHGRI large-scale genome sequencing program. http://www.genome.gov/sequencingcosts/. Accessed 1 October 2012.

  5. Shendure, J., Mitra, R.D., Varma, C. & Church, G.M. Advanced sequencing technologies: methods and goals. Nat. Rev. Genet. 5, 335–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Fuller, C.W. et al. The challenges of sequencing by synthesis. Nat. Biotechnol. 27, 1013–1023 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Metzker, M.L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Genome 10K Community of Scientists. Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J. Hered. 100, 659–674 (2009).

  11. Pevzner, P.A., Tang, H. & Waterman, M.S. An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. USA 98, 9748–9753 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci. USA 108, 1513–1518 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Alkan, C., Sajjadian, S. & Eichler, E.E. Limitations of next-generation genome sequence assembly. Nat. Methods 8, 61–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kitzman, J.O. et al. Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat. Biotechnol. 29, 59–63 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Peters, B.A. et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature 487, 190–195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fan, H.C., Wang, J., Potanina, A. & Quake, S.R. Whole-genome molecular haplotyping of single cells. Nat. Biotechnol. 29, 51–57 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Ma, L. et al. Direct determination of molecular haplotypes by chromosome microdissection. Nat. Methods 7, 299–301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ng, S.B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi, M. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl. Acad. Sci. USA 106, 19096–19101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vissers, L.E. et al. A de novo paradigm for mental retardation. Nat. Genet. 42, 1109–1112 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. O'Roak, B.J. et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet. 43, 585–589 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Girard, S.L. et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat. Genet. 43, 860–863 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Manolio, T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohane, I.S. & Shendure, J. What's a genome worth? Sci. Transl. Med. 4, 133fs113 (2012).

    Article  Google Scholar 

  27. Roberts, N.J. et al. The predictive capacity of personal genome sequencing. Sci. Transl. Med. 4, 133ra158 (2012).

    Article  Google Scholar 

  28. Worthey, E.A. et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet. Med. 13, 255–262 (2011).

    Article  PubMed  Google Scholar 

  29. Bainbridge, M.N. et al. Whole-genome sequencing for optimized patient management. Sci. Transl. Med. 3, 87re83 (2011).

    Article  CAS  Google Scholar 

  30. Bell, C.J. et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci. Transl. Med. 3, 65ra64 (2011).

    Article  CAS  Google Scholar 

  31. Fan, H.C., Blumenfeld, Y.J., Chitkara, U., Hudgins, L. & Quake, S.R. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc. Natl. Acad. Sci. USA 105, 16266–16271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chiu, R.W. et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc. Natl. Acad. Sci. USA 105, 20458–20463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kitzman, J.O. et al. Noninvasive whole-genome sequencing of a human fetus. Sci. Transl. Med. 4, 137ra176 (2012).

    Article  CAS  Google Scholar 

  34. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson, D.S., Mortazavi, A., Myers, R.M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Hesselberth, J.R. et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat. Methods 6, 283–289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lickwar, C.R., Mueller, F., Hanlon, S.E., McNally, J.G. & Lieb, J.D. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature 484, 251–255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Montgomery, S.B. et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464, 773–777 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Churchman, L.S. & Weissman, J.S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, E.T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, J.B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Sanford, J.R. et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 19, 381–394 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Licatalosi, D.D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R. & Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Howorka, S. & Siwy, Z.S. Nanopores as protein sensors. Nat. Biotechnol. 30, 506–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Tessler, L.A., Reifenberger, J.G. & Mitra, R.D. Protein quantification in complex mixtures by solid phase single-molecule counting. Anal. Chem. 81, 7141–7148 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Boyd, S.D. et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing. Sci. Transl. Med. 1, 12ra23 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Freeman, J.D., Warren, R.L., Webb, J.R., Nelson, B.H. & Holt, R.A. Profiling the T-cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res. 19, 1817–1824 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, C. et al. High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc. Natl. Acad. Sci. USA 107, 1518–1523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Robins, H.S. et al. Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells. Blood 114, 4099–4107 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Price, D.A. et al. Public clonotype usage identifies protective Gag-specific CD8+ T cell responses in SIV infection. J. Exp. Med. 206, 923–936 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Ley, T.J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Welch, J.S. et al. Use of whole-genome sequencing to diagnose a cryptic fusion oncogene. J. Am. Med. Assoc. 305, 1577–1584 (2011).

    Article  CAS  Google Scholar 

  59. Jones, S.J. et al. Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol. 11, R82 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Leary, R.J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Li, M. et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat. Biotechnol. 27, 858–863 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grice, E.A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gill, S.R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gardy, J.L. et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N. Engl. J. Med. 364, 730–739 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Harris, S.R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Codoner, F.M. et al. Added value of deep sequencing relative to population sequencing in heavily pre-treated HIV-1-infected subjects. PLoS ONE 6, e19461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zagordi, O., Klein, R., Daumer, M. & Beerenwinkel, N. Error correction of next-generation sequencing data and reliable estimation of HIV quasispecies. Nucleic Acids Res. 38, 7400–7409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Cullen, K.E., Kladde, M.P. & Seyfred, M.A. Interaction between transcription regulatory regions of prolactin chromatin. Science 261, 203–206 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Duan, Z. et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fullwood, M.J. et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Berger, M.F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hansen, R.S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl. Acad. Sci. USA 107, 139–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. ENCODE Project Consortium et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

  77. Gerstein, M.B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gore, A. et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 471, 63–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Baranzini, S.E. et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 464, 1351–1356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Green, R.E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schacherer, J., Shapiro, J.A., Ruderfer, D.M. & Kruglyak, L. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458, 342–345 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hess, M. et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331, 463–467 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Kao, K.C. & Sherlock, G. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat. Genet. 40, 1499–1504 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gresham, D. et al. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet. 4, e1000303 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307, 223–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Logan, A.C. et al. High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc. Natl. Acad. Sci. USA 108, 21194–21199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bassik, M.C. et al. Rapid creation and quantitative monitoring of high coverage shRNA libraries. Nat. Methods 6, 443–445 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326, 257–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Goodman, A.L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gallagher, L.A., Shendure, J. & Manoil, C. Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. MBio 2, e00315–e00310 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Carette, J.E. et al. Global gene disruption in human cells to assign genes to phenotypes by deep sequencing. Nat. Biotechnol. 29, 542–546 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Patwardhan, R.P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fowler, D.M. et al. High-resolution mapping of protein sequence-function relationships. Nat. Methods 7, 741–746 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Patwardhan, R.P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pitt, J.N. & Ferre-D'Amare, A.R. Rapid construction of empirical RNA fitness landscapes. Science 330, 376–379 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yu, Z. et al. Activators of the glutamate-dependent acid resistance system alleviate deleterious effects of YidC depletion in Escherichia coli. J. Bacteriol. 193, 1308–1316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gertz, J., Siggia, E.D. & Cohen, B.A. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature 457, 215–218 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Nett, J.H. et al. A combinatorial genetic library approach to target heterologous glycosylation enzymes to the endoplasmic reticulum or the Golgi apparatus of Pichia pastoris. Yeast 28, 237–252 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Di Niro, R. et al. Rapid interactome profiling by massive sequencing. Nucleic Acids Res. 38, e110 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Baryshnikova, A. et al. Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat. Methods 7, 1017–1024 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Roguev, A. et al. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405–410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Turner, E.H., Lee, C., Ng, S.B., Nickerson, D.A. & Shendure, J. Massively parallel exon capture and library-free resequencing across 16 genomes. Nat. Methods 6, 315–316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dahl, F., Gullberg, M., Stenberg, J., Landegren, U. & Nilsson, M. Multiplex amplification enabled by selective circularization of large sets of genomic DNA fragments. Nucleic Acids Res. 33, e71 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bashiardes, S. et al. Direct genomic selection. Nat. Methods 2, 63–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Meissner, A. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33, 5868–5877 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264–268 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Armour, C.D. et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat. Methods 6, 647–649 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Levin, J.Z. et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat. Methods 7, 709–715 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Song, C.X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Findeiss, S., Langenberger, D., Stadler, P.F. & Hoffmann, S. Traces of post-transcriptional RNA modifications in deep sequencing data. Biol. Chem. 392, 305–313 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, C. & Darnell, R.B. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol. 29, 607–614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mamanova, L. et al. FRT-seq: amplification-free, strand-specific transcriptome sequencing. Nat. Methods 7, 130–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 11, R119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Hiatt, J.B., Patwardhan, R.P., Turner, E.H., Lee, C. & Shendure, J. Parallel, tag-directed assembly of locally derived short sequence reads. Nat. Methods 7, 119–122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annu. Rev. Genomics Hum. Genet. 10, 387–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Blencowe, B.J., Ahmad, S. & Lee, L.J. Current-generation high-throughput sequencing: deepening insights into mammalian transcriptomes. Genes Dev. 23, 1379–1386 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Koren, S. et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 30, 693–700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Loman, N.J. et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30, 434–439 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Deng, J. et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol. 27, 353–360 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ponts, N. et al. Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res. 20, 228–238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mikkelsen, T.S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Heiman, M. et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738–748 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ribeiro, F. et al. Finished bacterial genomes from shotgun sequence data. Genome Res. Advance online

  134. Larsson, C. et al. In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat. Methods 1, 227–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Ramskold, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yu, H. et al. Next-generation sequencing to generate interactome datasets. Nat. Methods 8, 478–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Botvinnik, A., Wichert, S.P., Fischer, T.M. & Rossner, M.J. Integrated analysis of receptor activation and downstream signaling with EXTassays. Nat. Methods 7, 74–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Carlson, C.A. et al. Decoding cell lineage from acquired mutations using arbitrary deep sequencing. Nat. Methods 9, 78–80 (2012).

    Article  CAS  Google Scholar 

  140. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Solomon and L. Gaffney of the Broad Institute for assistance with the design and preparation of figures; B. Wong and S. Arbesman for input on figure design; A.P. Aiden for valuable comments; and members of the Shendure lab and of the Laboratory at Large for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jay Shendure or Erez Lieberman Aiden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shendure, J., Aiden, E. The expanding scope of DNA sequencing. Nat Biotechnol 30, 1084–1094 (2012). https://doi.org/10.1038/nbt.2421

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing