Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens

Abstract

Protection against mucosally transmitted infections probably requires immunity at the site of pathogen entry1, yet there are no mucosal adjuvant formulations licensed for human use. Polyethyleneimine (PEI) represents a family of organic polycations used as nucleic acid transfection reagents in vitro and DNA vaccine delivery vehicles in vivo2,3. Here we show that diverse PEI forms have potent mucosal adjuvant activity for viral subunit glycoprotein antigens. A single intranasal administration of influenza hemagglutinin or herpes simplex virus type-2 (HSV-2) glycoprotein D with PEI elicited robust antibody-mediated protection from an otherwise lethal infection, and was superior to existing experimental mucosal adjuvants. PEI formed nanoscale complexes with antigen, which were taken up by antigen-presenting cells in vitro and in vivo, promoted dendritic cell trafficking to draining lymph nodes and induced non-proinflammatory cytokine responses. PEI adjuvanticity required release of host double-stranded DNA that triggered Irf3-dependent signaling. PEI therefore merits further investigation as a mucosal adjuvant for human use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mucosal adjuvant activity of PEI and protection from disease by mucosal pathogens.
Figure 2: Interactions between antigen and PEI, and between immune cells and PEI-antigen complexes.
Figure 3: PEI-induced host dsDNA release and cytoplasmic recognition by means of Irf3-dependent signaling.

Similar content being viewed by others

References

  1. Chen, K. & Cerutti, A. Vaccination strategies to promote mucosal antibody responses. Immunity 33, 479–491 (2010).

    Article  CAS  Google Scholar 

  2. Gunther, M. et al. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Eur. J. Pharm. Biopharm. 77, 438–439 (2011).

    Article  Google Scholar 

  3. Lungwitz, U., Breunig, M., Blunk, T. & Gopferich, A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 60, 247–266 (2005).

    Article  CAS  Google Scholar 

  4. Lycke, N. Recent progress in mucosal vaccine development: potential and limitations. Nat. Rev. Immunol. 12, 592–605 (2012).

    Article  CAS  Google Scholar 

  5. Fujihashi, K., Koga, T., van Ginkel, F.W., Hagiwara, Y. & McGhee, J.R. A dilemma for mucosal vaccination: efficacy versus toxicity using enterotoxin-based adjuvants. Vaccine 20, 2431–2438 (2002).

    Article  CAS  Google Scholar 

  6. Lewis, D.J. et al. Transient facial nerve paralysis (Bell's palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS ONE 4, e6999 (2009).

    Article  Google Scholar 

  7. Sogaard, O.S. et al. Improving the immunogenicity of pneumococcal conjugate vaccine in HIV-infected adults with a toll-like receptor 9 agonist adjuvant: a randomized, controlled trial. Clin. Infect. Dis. 51, 42–50 (2010).

    Article  Google Scholar 

  8. Heikenwalder, M. et al. Lymphoid follicle destruction and immunosuppression after repeated CpG oligodeoxynucleotide administration. Nat. Med. 10, 187–192 (2004).

    Article  CAS  Google Scholar 

  9. Kasturi, S.P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).

    Article  CAS  Google Scholar 

  10. De Gregorio, E., D'Oro, U. & Wack, A. Immunology of TLR-independent vaccine adjuvants. Curr. Opin. Immunol. 21, 339–345 (2009).

    Article  CAS  Google Scholar 

  11. Lambrecht, B.N., Kool, M., Willart, M.A. & Hammad, H. Mechanism of action of clinically approved adjuvants. Curr. Opin. Immunol. 21, 23–29 (2009).

    Article  CAS  Google Scholar 

  12. Gavin, A.L. et al. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314, 1936–1938 (2006).

    Article  CAS  Google Scholar 

  13. Hu, K. et al. An ocular mucosal administration of nanoparticles containing DNA vaccine pRSC-gD-IL-21 confers protection against mucosal challenge with herpes simplex virus type 1 in mice. Vaccine 29, 1455–1462 (2011).

    Article  CAS  Google Scholar 

  14. Ma, Y.F. & Yang, Y.W. Delivery of DNA-based cancer vaccine with polyethylenimine. Eur. J. Pharm. Sci. 40, 75–83 (2010).

    Article  CAS  Google Scholar 

  15. Orr, G. et al. Syndecan-1 mediates the coupling of positively charged submicrometer amorphous silica particles with actin filaments across the alveolar epithelial cell membrane. Toxicol. Appl. Pharmacol. 236, 210–220 (2009).

    Article  CAS  Google Scholar 

  16. Wegrowski, Y. et al. Cell surface proteoglycan expression during maturation of human monocytes-derived dendritic cells and macrophages. Clin. Exp. Immunol. 144, 485–493 (2006).

    Article  CAS  Google Scholar 

  17. Park, K. Luciferin liposomes for enhanced in vivo bioluminescence. J. Control. Release 141, 109 (2009).

    Article  Google Scholar 

  18. Hunter, A.C. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv. Drug Deliv. Rev. 58, 1523–1531 (2006).

    Article  CAS  Google Scholar 

  19. Mutsch, M. et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N. Engl. J. Med. 350, 896–903 (2004).

    Article  CAS  Google Scholar 

  20. Yamamoto, S. et al. A nontoxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity. Proc. Natl. Acad. Sci. USA 94, 5267–5272 (1997).

    Article  CAS  Google Scholar 

  21. Lee, J.B., Jang, J.E., Song, M.K. & Chang, J. Intranasal delivery of cholera toxin induces Th17-dominated T-cell response to bystander antigens. PLoS One 4, e5190 (2009).

    Article  Google Scholar 

  22. Lindqvist, M., Persson, J., Thorn, K. & Harandi, A.M. The mucosal adjuvant effect of alpha-galactosylceramide for induction of protective immunity to sexually transmitted viral infection. J. Immunol. 182, 6435–6443 (2009).

    Article  CAS  Google Scholar 

  23. Kong, L. et al. Expression-system-dependent modulation of HIV-1 envelope glycoprotein antigenicity and immunogenicity. J. Mol. Biol. 403, 131–147 (2010).

    Article  CAS  Google Scholar 

  24. Rudolph, C. et al. Methodological optimization of polyethylenimine (PEI)-based gene delivery to the lungs of mice via aerosol application. J. Gene Med. 7, 59–66 (2005).

    Article  CAS  Google Scholar 

  25. Chen, J. et al. Improved antigen cross-presentation by polyethyleneimine-based nanoparticles. Int. J. Nanomedicine 6, 77–84 (2011).

    Article  CAS  Google Scholar 

  26. Calabro, S. et al. Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine 29, 1812–1823 (2011).

    Article  CAS  Google Scholar 

  27. Manicassamy, S. & Pulendran, B. Modulation of adaptive immunity with Toll-like receptors. Semin. Immunol. 21, 185–193 (2009).

    Article  CAS  Google Scholar 

  28. Marichal, T. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat. Med. 17, 996–1002 (2011).

    Article  CAS  Google Scholar 

  29. Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  CAS  Google Scholar 

  30. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  Google Scholar 

  31. Torrieri-Dramard, L. et al. Intranasal DNA vaccination induces potent mucosal and systemic immune responses and cross-protective immunity against influenza viruses. Mol. Ther. 19, 602–611 (2011).

    Article  CAS  Google Scholar 

  32. Littman, D.R. & Rudensky, A.Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010).

    Article  CAS  Google Scholar 

  33. Wegmann, F. et al. A novel strategy for inducing enhanced mucosal HIV-1 antibody responses in an anti-inflammatory environment. PLoS ONE 6, e15861 (2011).

    Article  CAS  Google Scholar 

  34. Skehel, J.J. & Waterfield, M.D. Studies on the primary structure of the influenza virus hemagglutinin. Proc. Natl. Acad. Sci. USA 72, 93–97 (1975).

    Article  CAS  Google Scholar 

  35. Del Campo, J. et al. Intranasal immunization with a proteoliposome-derived cochleate containing recombinant gD protein confers protective immunity against genital herpes in mice. Vaccine 28, 1193–1200 (2010).

    Article  CAS  Google Scholar 

  36. Sutterwala, F.S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    Article  CAS  Google Scholar 

  37. Krashias, G. et al. Potent adaptive immune responses induced against HIV-1 gp140 and influenza virus HA by a polyanionic carbomer. Vaccine 28, 2482–2489 (2010).

    Article  CAS  Google Scholar 

  38. Gomez Roman, V.R. et al. Development of standard operating procedures to obtain longitudinal vaginal specimens from nulliparous rabbits as part of HIV vaccine mucosal immunogenicity studies. J. Immunol. Methods 363, 29–41 (2010).

    Article  CAS  Google Scholar 

  39. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from The MRC UK, The EU Network of Excellence 'Europrise', The International AIDS Vaccine Initiative Neutralizing Antibody Consortium (IAVI), The Bill and Melinda Gates Foundation Collaboration for Vaccine Design (CAVD), Dormeur Investment Service Ltd., the FP7-funded High Impact Project Advanced Immunization Technologies (ADITEC) and The EuroNanoMed-European Commission funded iNanoDCs. Q.J.S. is a Jenner Institute Investigator and a James Martin Senior Fellow.

Author information

Authors and Affiliations

Authors

Contributions

Q.J.S. conceived the study and N.C.S. provided initial proof of concept. F.W., K.H.G., S.A.B., N.C.S., A.M.H., M.C., W.R.H., W.L.K., S.C., T.L., M.P., E.M.S., G.K., A.W. and A.E.M. designed and performed experiments. Q.J.S., F.W. and K.H.G. wrote the paper. A.M.H., L.-P.H., C.S., J.N.B., P.D.G., R.A.F., A.E.M. and N.C.S. supplied reagents and made editorial suggestions.

Corresponding author

Correspondence to Quentin J Sattentau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 and Supplementary Figures 1–12 (PDF 9100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegmann, F., Gartlan, K., Harandi, A. et al. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. Nat Biotechnol 30, 883–888 (2012). https://doi.org/10.1038/nbt.2344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing