Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oncolytic virotherapy

Abstract

Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancers. Recent advances include preclinical proof of feasibility for a single-shot virotherapy cure, identification of drugs that accelerate intratumoral virus propagation, strategies to maximize the immunotherapeutic action of oncolytic viruses and clinical confirmation of a critical viremic threshold for vascular delivery and intratumoral virus replication. The primary clinical milestone has been completion of accrual in a phase 3 trial of intratumoral herpes simplex virus therapy using talimogene laherparepvec for metastatic melanoma. Key challenges for the field are to select 'winners' from a burgeoning number of oncolytic platforms and engineered derivatives, to transiently suppress but then unleash the power of the immune system to maximize both virus spread and anticancer immunity, to develop more meaningful preclinical virotherapy models and to manufacture viruses with orders-of-magnitude higher yields than is currently possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A timeline of milestones in the development of oncolytic virotherapy to improve virus specificity, potency, delivery and spread.
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Russell, S.J. & Peng, K.W. Viruses as anticancer drugs. Trends Pharmacol. Sci. 28, 326–333 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Virgin, S. Pathogenesis of viral infection. in Fields Virology, 5th edn, vol. 1 (eds. Knipe, D.M. & Howley, P.M. (Lippincott Williams & Wilkins, Philadelphia, 2007).

  3. Cattaneo, R., Miest, T., Shashkova, E.V. & Barry, M.A. Reprogrammed viruses as cancer therapeutics: targeted, armed and shielded. Nat. Rev. Microbiol. 6, 529–540 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dorer, D.E. & Nettelbeck, D.M. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv. Drug Deliv. Rev. 61, 554–571 (2009).

    CAS  PubMed  Google Scholar 

  5. Naik, S. & Russell, S.J. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opin. Biol. Ther. 9, 1163–1176 (2009).

    CAS  PubMed  Google Scholar 

  6. Kelly, E.J. & Russell, S.J. MicroRNAs and the regulation of vector tropism. Mol. Ther. 17, 409–416 (2009).

    CAS  PubMed  Google Scholar 

  7. Kelly, E. & Russell, S.J. History of oncolytic viruses: genesis to genetic engineering. Mol. Ther. 15, 651–659 (2007).

    CAS  PubMed  Google Scholar 

  8. Southam, C.M. Present status of oncolytic virus studies. Trans. N.Y. Acad. Sci. 22, 657–673 (1960).

    CAS  PubMed  Google Scholar 

  9. Asada, T. Treatment of human cancer with mumps virus. Cancer 34, 1907–1928 (1974).

    CAS  PubMed  Google Scholar 

  10. Martuza, R.L., Malick, A., Markert, J.M., Ruffner, K.L. & Coen, D.M. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252, 854–856 (1991).

    CAS  PubMed  Google Scholar 

  11. Au, G.G., Lindberg, A.M., Barry, R.D. & Shafren, D.R. Oncolysis of vascular malignant human melanoma tumors by coxsackievirus A21. Int. J. Oncol. 26, 1471–1476 (2005).

    CAS  PubMed  Google Scholar 

  12. Rudin, C.M. et al. Phase I clinical study of Seneca Valley virus (SVV-001), a replication-competent picornavirus, in advanced solid tumors with neuroendocrine features. Clin. Cancer Res. 17, 888–895 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tai, C.K. & Kasahara, N. Replication-competent retrovirus vectors for cancer gene therapy. Front. Biosci. 13, 3083–3095 (2008).

    CAS  PubMed  Google Scholar 

  14. Liu, T.C., Galanis, E. & Kirn, D. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat. Clin. Pract. Oncol. 4, 101–117 (2007).

    CAS  PubMed  Google Scholar 

  15. Schoofs, G. et al. A high-yielding serum-free, suspension cell culture process to manufacture recombinant adenoviral vectors for gene therapy. Cytotechnology 28, 81–89 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Knop, D.R. & Harrell, H. Bioreactor production of recombinant herpes simplex virus vectors. Biotechnol. Prog. 23, 715–721 (2007).

    CAS  PubMed  Google Scholar 

  17. Lewis, J.A., Brown, E.L. & Duncan, P.A. Approaches to the release of a master cell bank of PER.C6 cells; a novel cell substrate for the manufacture of human vaccines. Dev. Biol. (Basel) 123, 165–176, discussion 183–197 (2006).

    CAS  Google Scholar 

  18. Russell, S.J. Replicating vectors for cancer therapy: a question of strategy. Semin. Cancer Biol. 5, 437–443 (1994).

    CAS  PubMed  Google Scholar 

  19. Senzer, N.N. et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J. Clin. Oncol. 27, 5763–5771 (2009).

    CAS  PubMed  Google Scholar 

  20. Park, B.H. et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 9, 533–542 (2008).

    CAS  PubMed  Google Scholar 

  21. Eager, R.M. & Nemunaitis, J. Clinical development directions in oncolytic viral therapy. Cancer Gene Ther. 18, 305–317 (2011).

    CAS  PubMed  Google Scholar 

  22. Mastrangelo, M.J. et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 6, 409–422 (1999).

    CAS  PubMed  Google Scholar 

  23. Harrington, K.J. et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin. Cancer Res. 16, 4005–4015 (2010).

    CAS  PubMed  Google Scholar 

  24. Harrington, K.J., Vile, R.G., Melcher, A., Chester, J. & Pandha, H.S. Clinical trials with oncolytic reovirus: moving beyond phase I into combinations with standard therapeutics. Cytokine Growth Factor Rev. 21, 91–98 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Heo, J. et al. Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. Mol. Ther. 19, 1170–1179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng, K.W., Facteau, S., Wegman, T., O'Kane, D. & Russell, S.J. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat. Med. 8, 527–531 (2002).

    CAS  PubMed  Google Scholar 

  27. Kelly, E.J., Hadac, E.M., Greiner, S. & Russell, S.J. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat. Med. 14, 1278–1283 (2008).

    CAS  PubMed  Google Scholar 

  28. Naik, S. et al. Curative one-shot systemic virotherapy in murine myeloma. Leukemia published online, 10.1038/leu.2012.70 (19 March 2012).

  29. Breitbach, C.J. et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477, 99–102 (2011).

    CAS  PubMed  Google Scholar 

  30. Serganova, I., Ponomarev, V. & Blasberg, R. Human reporter genes: potential use in clinical studies. Nucl. Med. Biol. 34, 791–807 (2007).

    CAS  PubMed  Google Scholar 

  31. Galanis, E. et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 70, 875–882 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jacobs, A. et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358, 727–729 (2001).

    CAS  PubMed  Google Scholar 

  33. Dingli, D., Russell, S.J. & Morris, J.C. III. In vivo imaging and tumor therapy with the sodium iodide symporter. J. Cell. Biochem. 90, 1079–1086 (2003).

    CAS  PubMed  Google Scholar 

  34. Barton, K.N. et al. Phase I study of noninvasive imaging of adenovirus-mediated gene expression in the human prostate. Mol. Ther. 16, 1761–1769 (2008).

    CAS  PubMed  Google Scholar 

  35. Dingli, D. et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 103, 1641–1646 (2004).

    CAS  PubMed  Google Scholar 

  36. Underhill, D.M. & Ozinsky, A. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20, 825–852 (2002).

    CAS  PubMed  Google Scholar 

  37. Haisma, H.J. et al. Scavenger receptor A: a new route for adenovirus 5. Mol. Pharm. 6, 366–374 (2009).

    CAS  PubMed  Google Scholar 

  38. Bessis, N., GarciaCozar, F.J. & Boissier, M.C. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 11 (suppl. 1), S10–S17 (2004).

    CAS  PubMed  Google Scholar 

  39. Fisher, K.D. & Seymour, L.W. HPMA copolymers for masking and retargeting of therapeutic viruses. Adv. Drug Deliv. Rev. 62, 240–245 (2010).

    CAS  PubMed  Google Scholar 

  40. Eto, Y., Yoshioka, Y., Mukai, Y., Okada, N. & Nakagawa, S. Development of PEGylated adenovirus vector with targeting ligand. Int. J. Pharm. 354, 3–8 (2008).

    CAS  PubMed  Google Scholar 

  41. Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006).

    CAS  PubMed  Google Scholar 

  42. Morrison, J. et al. Virotherapy of ovarian cancer with polymer-cloaked adenovirus retargeted to the epidermal growth factor receptor. Mol. Ther. 16, 244–251 (2008).

    CAS  PubMed  Google Scholar 

  43. Croyle, M.A. et al. PEGylation of a vesicular stomatitis virus G pseudotyped lentivirus vector prevents inactivation in serum. J. Virol. 78, 912–921 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Alemany, R., Suzuki, K. & Curiel, D.T. Blood clearance rates of adenovirus type 5 in mice. J. Gen. Virol. 81, 2605–2609 (2000).

    CAS  PubMed  Google Scholar 

  45. Doronin, K., Shashkova, E.V., May, S.M., Hofherr, S.E. & Barry, M.A. Chemical modification with high molecular weight polyethylene glycol reduces transduction of hepatocytes and increases efficacy of intravenously delivered oncolytic adenovirus. Hum. Gene Ther. 20, 975–988 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Green, N.K. et al. Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther. 11, 1256–1263 (2004).

    CAS  PubMed  Google Scholar 

  47. Ikeda, K. et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat. Med. 5, 881–887 (1999).

    CAS  PubMed  Google Scholar 

  48. Ikeda, K. et al. Complement depletion facilitates the infection of multiple brain tumors by an intravascular, replication-conditional herpes simplex virus mutant. J. Virol. 74, 4765–4775 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wakimoto, H. et al. The complement response against an oncolytic virus is species-specific in its activation pathways. Mol. Ther. 5, 275–282 (2002).

    CAS  PubMed  Google Scholar 

  50. Haisma, H.J. & Bellu, A.R. Pharmacological interventions for improving adenovirus usage in gene therapy. Mol. Pharm. 8, 50–55 (2011).

    CAS  PubMed  Google Scholar 

  51. Shashkova, E.V., Doronin, K., Senac, J.S. & Barry, M.A. Macrophage depletion combined with anticoagulant therapy increases therapeutic window of systemic treatment with oncolytic adenovirus. Cancer Res. 68, 5896–5904 (2008).

    CAS  PubMed  Google Scholar 

  52. Koski, A. et al. Systemic adenoviral gene delivery to orthotopic murine breast tumors with ablation of coagulation factors, thrombocytes and Kupffer cells. J. Gene Med. 11, 966–977 (2009).

    CAS  PubMed  Google Scholar 

  53. Ziegler, R.J. et al. Correction of the nonlinear dose response improves the viability of adenoviral vectors for gene therapy of Fabry disease. Hum. Gene Ther. 13, 935–945 (2002).

    CAS  PubMed  Google Scholar 

  54. Manickan, E. et al. Rapid Kupffer cell death after intravenous injection of adenovirus vectors. Mol. Ther. 13, 108–117 (2006).

    CAS  PubMed  Google Scholar 

  55. Tao, N. et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol. Ther. 3, 28–35 (2001).

    CAS  PubMed  Google Scholar 

  56. Power, A.T. & Bell, J.C. Taming the Trojan horse: optimizing dynamic carrier cell/oncolytic virus systems for cancer biotherapy. Gene Ther. 15, 772–779 (2008).

    CAS  PubMed  Google Scholar 

  57. Ilett, E.J. et al. Dendritic cells and T cells deliver oncolytic reovirus for tumour killing despite pre-existing anti-viral immunity. Gene Ther. 16, 689–699 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, C., Russell, S.J. & Peng, K.W. Systemic therapy of disseminated myeloma in passively immunized mice using measles virus-infected cell carriers. Mol. Ther. 18, 1155–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dwyer, R.M., Khan, S., Barry, F.P., O'Brien, T. & Kerin, M.J. Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Res. Ther. 1, 25 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. García-Castro, J. et al. Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther. 17, 476–483 (2010).

    PubMed  Google Scholar 

  61. Ling, X. et al. Mesenchymal stem cells overexpressing IFN-β inhibit breast cancer growth and metastases through Stat3 signaling in a syngeneic tumor model. Cancer Microenviron. 3, 83–95 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Mader, E.K. et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin. Cancer Res. 15, 7246–7255 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ilett, E.J. et al. Internalization of oncolytic reovirus by human dendritic cell carriers protects the virus from neutralization. Clin. Cancer Res. 17, 2767–2776 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Qiao, J. et al. Loading of oncolytic vesicular stomatitis virus onto antigen-specific T cells enhances the efficacy of adoptive T-cell therapy of tumors. Gene Ther. 15, 604–616 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ong, H.T., Hasegawa, K., Dietz, A.B., Russell, S.J. & Peng, K.W. Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther. 14, 324–333 (2007).

    CAS  PubMed  Google Scholar 

  66. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  PubMed  Google Scholar 

  67. Fang, J., Nakamura, H. & Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    CAS  PubMed  Google Scholar 

  68. Hobbs, S.K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA 95, 4607–4612 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hashizume, H. et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jain, R.K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fox, M.E., Szoka, F.C. & Frechet, J.M. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc. Chem. Res. 42, 1141–1151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Barnett, F.H. et al. Selective delivery of herpes virus vectors to experimental brain tumors using RMP-7. Cancer Gene Ther. 6, 14–20 (1999).

    CAS  PubMed  Google Scholar 

  73. Tseng, J.C., Granot, T., DiGiacomo, V., Levin, B. & Meruelo, D. Enhanced specific delivery and targeting of oncolytic Sindbis viral vectors by modulating vascular leakiness in tumor. Cancer Gene Ther. 17, 244–255 (2010).

    CAS  PubMed  Google Scholar 

  74. Kottke, T. et al. Antiangiogenic cancer therapy combined with oncolytic virotherapy leads to regression of established tumors in mice. J. Clin. Invest. 120, 1551–1560 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kottke, T. et al. Treg depletion-enhanced IL-2 treatment facilitates therapy of established tumors using systemically delivered oncolytic virus. Mol. Ther. 16, 1217–1226 (2008).

    CAS  PubMed  Google Scholar 

  76. Driessen, W.H., Ozawa, M.G., Arap, W. & Pasqualini, R. Ligand-directed cancer gene therapy to angiogenic vasculature. Adv. Genet. 67, 103–121 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Thorne, S.H. et al. Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963. J. Clin. Invest. 117, 3350–3358 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Neri, D. & Bicknell, R. Tumour vascular targeting. Nat. Rev. Cancer 5, 436–446 (2005).

    CAS  PubMed  Google Scholar 

  79. Sanz, L. et al. Single-chain antibody-based gene therapy: inhibition of tumor growth by in situ production of phage-derived human antibody fragments blocking functionally active sites of cell-associated matrices. Gene Ther. 9, 1049–1053 (2002).

    CAS  PubMed  Google Scholar 

  80. Palumbo, A. et al. A chemically modified antibody mediates complete eradication of tumours by selective disruption of tumour blood vessels. Br. J. Cancer 104, 1106–1115 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakamura, T. et al. Rescue and propagation of fully retargeted oncolytic measles viruses. Nat. Biotechnol. 23, 209–214 (2005).

    CAS  PubMed  Google Scholar 

  82. Morrison, J. et al. Cetuximab retargeting of adenovirus via the epidermal growth factor receptor for treatment of intraperitoneal ovarian cancer. Hum. Gene Ther. 20, 239–251 (2009).

    CAS  PubMed  Google Scholar 

  83. Bachtarzi, H. et al. Targeting adenovirus gene delivery to activated tumour-associated vasculature via endothelial selectins. J. Control. Release 150, 196–203 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ong, H.T. et al. Intravascularly administered RGD-displaying measles viruses bind to and infect neovessel endothelial cells in vivo. Mol. Ther. 17, 1012–1021 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jing, Y. et al. Tumor and vascular targeting of a novel oncolytic measles virus retargeted against the urokinase receptor. Cancer Res. 69, 1459–1468 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kumar, C.C. et al. Biochemical characterization of the binding of echistatin to integrin αvβ3 receptor. J. Pharmacol. Exp. Ther. 283, 843–853 (1997).

    CAS  PubMed  Google Scholar 

  87. Breitbach, C.J. et al. Targeting tumor vasculature with an oncolytic virus. Mol. Ther. 19, 886–894 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, H.H. et al. Active adenoviral vascular penetration by targeted formation of heterocellular endothelial-epithelial syncytia. Mol. Ther. 19, 67–75 (2011).

    CAS  PubMed  Google Scholar 

  89. Stojdl, D.F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4, 263–275 (2003).

    CAS  PubMed  Google Scholar 

  90. Schoggins, J.W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Haller, O., Kochs, G. & Weber, F. Interferon, Mx, and viral countermeasures. Cytokine Growth Factor Rev. 18, 425–433 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Vandevenne, P., Sadzot-Delvaux, C. & Piette, J. Innate immune response and viral interference strategies developed by human herpesviruses. Biochem. Pharmacol. 80, 1955–1972 (2010).

    CAS  PubMed  Google Scholar 

  93. Lu, M.Y. & Liao, F. Interferon-stimulated gene ISG12b2 is localized to the inner mitochondrial membrane and mediates virus-induced cell death. Cell Death Differ. 18, 925–936 (2011).

    CAS  PubMed  Google Scholar 

  94. Stojdl, D.F. et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med. 6, 821–825 (2000).

    CAS  PubMed  Google Scholar 

  95. Haralambieva, I. et al. Engineering oncolytic measles virus to circumvent the intracellular innate immune response. Mol. Ther. 15, 588–597 (2007).

    CAS  PubMed  Google Scholar 

  96. Altomonte, J. et al. Exponential enhancement of oncolytic vesicular stomatitis virus potency by vector-mediated suppression of inflammatory responses in vivo. Mol. Ther. 16, 146–153 (2008).

    CAS  PubMed  Google Scholar 

  97. Le Boeuf, F. et al. Synergistic interaction between oncolytic viruses augments tumor killing. Mol. Ther. 18, 888–895 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kirn, D.H. & Thorne, S.H. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat. Rev. Cancer 9, 64–71 (2009).

    CAS  PubMed  Google Scholar 

  99. Chang, H.M. et al. Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc. Natl. Acad. Sci. USA 101, 9578–9583 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nguyên, T.L. et al. Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc. Natl. Acad. Sci. USA 105, 14981–14986 (2008).

    PubMed  PubMed Central  Google Scholar 

  101. Otsuki, A. et al. Histone deacetylase inhibitors augment antitumor efficacy of herpes-based oncolytic viruses. Mol. Ther. 16, 1546–1555 (2008).

    CAS  PubMed  Google Scholar 

  102. MacTavish, H. et al. Enhancement of vaccinia virus based oncolysis with histone deacetylase inhibitors. PLoS ONE 5, e14462 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Diallo, J.S. et al. A high-throughput pharmacoviral approach identifies novel oncolytic virus sensitizers. Mol. Ther. 18, 1123–1129 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Passer, B.J. et al. Identification of the ENT1 antagonists dipyridamole and dilazep as amplifiers of oncolytic herpes simplex virus-1 replication. Cancer Res. 70, 3890–3895 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Alain, T. et al. Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production. Proc. Natl. Acad. Sci. USA 107, 1576–1581 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Lun, X. et al. Myxoma virus virotherapy for glioma in immunocompetent animal models: optimizing administration routes and synergy with rapamycin. Cancer Res. 70, 598–608 (2010).

    CAS  PubMed  Google Scholar 

  107. Lun, X.Q. et al. Targeting human medulloblastoma: oncolytic virotherapy with myxoma virus is enhanced by rapamycin. Cancer Res. 67, 8818–8827 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Qiao, J. et al. Cyclophosphamide facilitates antitumor efficacy against subcutaneous tumors following intravenous delivery of reovirus. Clin. Cancer Res. 14, 259–269 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kottke, T. et al. Improved systemic delivery of oncolytic reovirus to established tumors using preconditioning with cyclophosphamide-mediated Treg modulation and interleukin-2. Clin. Cancer Res. 15, 561–569 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kurozumi, K. et al. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J. Natl. Cancer Inst. 99, 1768–1781 (2007).

    CAS  PubMed  Google Scholar 

  111. Kirn, D.H., Wang, Y., Liang, W., Contag, C.H. & Thorne, S.H. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res. 68, 2071–2075 (2008).

    CAS  PubMed  Google Scholar 

  112. Reeves, P.M. et al. Variola and monkeypox viruses utilize conserved mechanisms of virion motility and release that depend on abl and SRC family tyrosine kinases. J. Virol. 85, 21–31 (2011).

    CAS  PubMed  Google Scholar 

  113. Hoffmann, D. & Wildner, O. Enhanced killing of pancreatic cancer cells by expression of fusogenic membrane glycoproteins in combination with chemotherapy. Mol. Cancer Ther. 5, 2013–2022 (2006).

    CAS  PubMed  Google Scholar 

  114. Patel, B. et al. Differential cytopathology and kinetics of measles oncolysis in two primary B-cell malignancies provides mechanistic insights. Mol. Ther. 19, 1034–1040 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Israyelyan, A. et al. Herpes simplex virus type-1(HSV-1) oncolytic and highly fusogenic mutants carrying the NV1020 genomic deletion effectively inhibit primary and metastatic tumors in mice. Virol. J. 5, 68 (2008).

    PubMed  PubMed Central  Google Scholar 

  116. Brown, C.W. et al. The p14 FAST protein of reptilian reovirus increases vesicular stomatitis virus neuropathogenesis. J. Virol. 83, 552–561 (2009).

    CAS  PubMed  Google Scholar 

  117. Sauthoff, H. et al. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points. Hum. Gene Ther. 14, 425–433 (2003).

    CAS  PubMed  Google Scholar 

  118. Yun, C.O. Overcoming the extracellular matrix barrier to improve intratumoral spread and therapeutic potential of oncolytic virotherapy. Curr. Opin. Mol. Ther. 10, 356–361 (2008).

    PubMed  Google Scholar 

  119. Diop-Frimpong, B., Chauhan, V.P., Krane, S., Boucher, Y. & Jain, R.K. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. Proc. Natl. Acad. Sci. USA 108, 2909–2914 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ganesh, S., Gonzalez-Edick, M., Gibbons, D., Van Roey, M. & Jooss, K. Intratumoral coadministration of hyaluronidase enzyme and oncolytic adenoviruses enhances virus potency in metastatic tumor models. Clin. Cancer Res. 14, 3933–3941 (2008).

    CAS  PubMed  Google Scholar 

  121. Guedan, S. et al. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol. Ther. 18, 1275–1283 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Toth, K., Dhar, D. & Wold, W.S. Oncolytic (replication-competent) adenoviruses as anticancer agents. Expert Opin. Biol. Ther. 10, 353–368 (2010).

    CAS  PubMed  Google Scholar 

  123. Muthana, M. et al. Use of macrophages to target therapeutic adenovirus to human prostate tumors. Cancer Res. 71, 1805–1815 (2011).

    CAS  PubMed  Google Scholar 

  124. Lee, C.Y.F. et al. Transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1 for targeting prostate tumors. Mol. Ther. 18, 929–935 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Foka, P. et al. Novel tumour-specific promoters for transcriptional targeting of hepatocellular carcinoma by herpes simplex virus vectors. J. Gene Med. 12, 956–967 (2010).

    CAS  PubMed  Google Scholar 

  126. Muik, A. et al. Pseudotyping vesicular stomatitis virus with lymphocytic choriomeningitis virus glycoproteins enhances infectivity for glioma cells and minimizes neurotropism. J. Virol. 85, 5679–5684 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ayala Breton, C., Barber, G.N., Russell, S. & Peng, K.W. Retargeting vesicular stomatitis virus using measles virus envelope glycoproteins. Hum. Gene Ther. 23, 484–491 (2012).

    CAS  PubMed  Google Scholar 

  128. Shashkova, E.V., May, S.M., Doronin, K. & Barry, M.A. Expanded anticancer therapeutic window of hexon-modified oncolytic adenovirus. Mol. Ther. 17, 2121–2130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Leber, M.F. et al. MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol. Ther. 19, 1097–1106 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Cawood, R., Wong, S.L., Di, Y., Baban, D.F. & Seymour, L.W. MicroRNA controlled adenovirus mediates anti-cancer efficacy without affecting endogenous microRNA activity. PLoS ONE 6, e16152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Cawood, R. et al. Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells. PLoS Pathog. 5, e1000440 (2009).

    PubMed  PubMed Central  Google Scholar 

  132. Kelly, E.J., Nace, R., Barber, G.N. & Russell, S.J. Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting. J. Virol. 84, 1550–1562 (2010).

    CAS  PubMed  Google Scholar 

  133. Edge, R.E. et al. A let-7 microRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol. Ther. 16, 1437–1443 (2008).

    CAS  PubMed  Google Scholar 

  134. Sugio, K. et al. Enhanced safety profiles of the telomerase-specific replication-competent adenovirus by incorporation of normal cell-specific microRNA-targeted sequences. Clin. Cancer Res. 17, 2807–2818 (2011).

    CAS  PubMed  Google Scholar 

  135. Yang, X. et al. Evaluation of IRES-mediated, cell-type-specific cytotoxicity of poliovirus using a colorimetric cell proliferation assay. J. Virol. Methods 155, 44–54 (2009).

    CAS  PubMed  Google Scholar 

  136. Roos, F.C. et al. Oncolytic targeting of renal cell carcinoma via encephalomyocarditis virus. EMBO Mol. Med. 2, 275–288 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Oliere, S. et al. Vesicular stomatitis virus oncolysis of T lymphocytes requires cell cycle entry and translation initiation. J. Virol. 82, 5735–5749 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Stoff-Khalili, M.A. et al. Cancer-specific targeting of a conditionally replicative adenovirus using mRNA translational control. Breast Cancer Res. Treat. 108, 43–55 (2008).

    CAS  PubMed  Google Scholar 

  139. Banaszynski, L.A., Sellmyer, M.A., Contag, C.H., Wandless, T.J. & Thorne, S.H. Chemical control of protein stability and function in living mice. Nat. Med. 14, 1123–1127 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Glass, M., Busche, A., Wagner, K., Messerle, M. & Borst, E.M. Conditional and reversible disruption of essential herpesvirus proteins. Nat. Methods 6, 577–579 (2009).

    CAS  PubMed  Google Scholar 

  141. Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G. & Wandless, T.J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Stepkowski, S.M. Molecular targets for existing and novel immunosuppressive drugs. Expert Rev. Mol. Med. 2, 1–23 (2000).

    CAS  PubMed  Google Scholar 

  143. Chiocca, E.A. The host response to cancer virotherapy. Curr. Opin. Mol. Ther. 10, 38–45 (2008).

    PubMed  Google Scholar 

  144. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  145. Yang, L., Pang, Y. & Moses, H.L. TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 31, 220–227 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Melcher, A., Parato, K., Rooney, C.M. & Bell, J.C. Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol. Ther. 6, 1008–1016 (2011).

    Google Scholar 

  147. Mastrangelo, M.J., Maguire, H.C. & Lattime, E.C. Intralesional vaccinia/GM-CSF recombinant virus in the treatment of metastatic melanoma. Adv. Exp. Med. Biol. 465, 391–400 (2000).

    CAS  PubMed  Google Scholar 

  148. Diaz, R.M. et al. Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res. 67, 2840–2848 (2007).

    CAS  PubMed  Google Scholar 

  149. Bridle, B.W., Hanson, S. & Lichty, B.D. Combining oncolytic virotherapy and tumour vaccination. Cytokine Growth Factor Rev. 21, 143–148 (2010).

    CAS  PubMed  Google Scholar 

  150. Kottke, T. et al. Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors. Nat. Med. 17, 854–859 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Pulido, J. et al. Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nat. Biotechnol. 30, 337–343 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Kottke, T. et al. Use of biological therapy to enhance both virotherapy and adoptive T-cell therapy for cancer. Mol. Ther. 16, 1910–1918 (2008).

    CAS  PubMed  Google Scholar 

  153. Senac, J.S. et al. Infection and killing of multiple myeloma by adenoviruses. Hum. Gene Ther. 21, 179–190 (2010).

    CAS  PubMed  Google Scholar 

  154. Zhang, X., Zhao, L., Hang, Z., Guo, H. & Zhang, M. Evaluation of HSV-1 and adenovirus vector-mediated infection, replication and cytotoxicity in lymphoma cell lines. Oncol. Rep. 26, 637–644 (2011).

    CAS  PubMed  Google Scholar 

  155. Kanai, R., Wakimoto, H., Cheema, T. & Rabkin, S.D. Oncolytic herpes simplex virus vectors and chemotherapy: are combinatorial strategies more effective for cancer? Future Oncol. 6, 619–634 (2010).

    PubMed  Google Scholar 

  156. Russell, S.J. & Peng, K.W. Measles virus for cancer therapy. Curr. Top. Microbiol. Immunol. 330, 213–241 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Byrnes, A.P. & Griffin, D.E. Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. J. Virol. 74, 644–651 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lee, P., Knight, R., Smit, J.M., Wilschut, J. & Griffin, D.E. A single mutation in the E2 glycoprotein important for neurovirulence influences binding of sindbis virus to neuroblastoma cells. J. Virol. 76, 6302–6310 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen, N. et al. Poxvirus interleukin-4 expression overcomes inherent resistance and vaccine-induced immunity: pathogenesis, prophylaxis, and antiviral therapy. Virology 409, 328–337 (2011).

    CAS  PubMed  Google Scholar 

  160. Peng, K.W. et al. Using clinically approved cyclophosphamide regimens to control the humoral immune response to oncolytic viruses. Gene Ther. published, online doi:10.1038/gt.2012.31 (5 April 2012).

    CAS  PubMed  Google Scholar 

  161. Miyatake, S., Iyer, A., Martuza, R.L. & Rabkin, S.D. Transcriptional targeting of herpes simplex virus for cell-specific replication. J. Virol. 71, 5124–5132 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Rodriguez, R. et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res. 57, 2559–2563 (1997).

    CAS  PubMed  Google Scholar 

  163. Kuhn, I. et al. Directed evolution generates a novel oncolytic virus for the treatment of colon cancer. PLoS ONE 3, e2409 (2008).

    PubMed  PubMed Central  Google Scholar 

  164. Doronin, K. et al. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J. Virol. 74, 6147–6155 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Wong, R.J. et al. Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum. Gene Ther. 12, 253–265 (2001).

    CAS  PubMed  Google Scholar 

  166. Kim, J.H. et al. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J. Natl. Cancer Inst. 98, 1482–1493 (2006).

    CAS  PubMed  Google Scholar 

  167. Thorne, S.H., Negrin, R.S. & Contag, C.H. Synergistic antitumor effects of immune cell-viral biotherapy. Science 311, 1780–1784 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.J.R. and K.-W.P. acknowledge funding support from the Mayo Foundation, Mayo Clinic Comprehensive Cancer Center (CA15083), US National Institutes of Health and National Cancer Institute (CA100634, CA129966, CA118488, CA129193, CA136547 and CA136393), Richard M. Schulze Family Foundation, Al and Mary Agnes McQuinn and Minnesota Partnership for Biotechnology. J.C.B. is supported by the Ontario Institute for Cancer Research, the Terry Fox Foundation and the Ottawa Regional Cancer Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J Russell.

Ethics declarations

Competing interests

J.C.B. is the chief scientific officer of Jennerex Biotherapeutics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, S., Peng, KW. & Bell, J. Oncolytic virotherapy. Nat Biotechnol 30, 658–670 (2012). https://doi.org/10.1038/nbt.2287

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2287

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer