Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic targets in cancer cell metabolism and autophagy

Abstract

The metabolism of cancer cells is reprogrammed both by oncogene signaling and by dysregulation of metabolic enzymes. The resulting altered metabolism supports cellular proliferation and survival but leaves cancer cells dependent on a continuous supply of nutrients. Thus, many metabolic enzymes have become targets for new cancer therapies. Recently, two processes—expression of specific isoforms of metabolic enzymes and autophagy—have been shown to be crucial for the adaptation of tumor cells to changes in nutrient availability. An increasing number of approved and experimental therapeutics target these two processes. A better understanding of the molecular basis of cancer-associated metabolic changes may lead to improved cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Core metabolic pathways and metabolic enzymes suitable as cancer therapeutic targets.
Figure 2: Modulators of the autophagy pathway.

Similar content being viewed by others

References

  1. Cairns, R.A., Harris, I.S. & Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011).

    CAS  PubMed  Google Scholar 

  2. Ward, P.S. & Thompson, C.B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297–308 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhan, T., Digel, M., Kuch, E.M., Stremmel, W. & Fullekrug, J. Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. J. Cell. Biochem. 112, 849–859 (2011).

    CAS  PubMed  Google Scholar 

  5. Cheung, C.W., Gibbons, N., Johnson, D.W. & Nicol, D.L. Silibinin–a promising new treatment for cancer. Anticancer. Agents Med. Chem. 10, 186–195 (2010).

    CAS  PubMed  Google Scholar 

  6. Porporato, P.E., Dhup, S., Dadhich, R.K., Copetti, T. & Sonveaux, P. Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol. 2, 49 (2011).

    PubMed  PubMed Central  Google Scholar 

  7. Mathupala, S.P., Ko, Y.H. & Pedersen, P.L. Hexokinase-2 bound to mitochondria: cancer's stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin. Cancer Biol. 19, 17–24 (2009).

    CAS  PubMed  Google Scholar 

  8. Telang, S. et al. Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 25, 7225–7234 (2006).

    CAS  PubMed  Google Scholar 

  9. Christofk, H.R., Vander Heiden, M.G., Wu, N., Asara, J.M. & Cantley, L.C. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452, 181–186 (2008).

    CAS  PubMed  Google Scholar 

  10. Christofk, H.R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    CAS  PubMed  Google Scholar 

  11. Vander Heiden, M.G. et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 329, 1492–1499 (2010).

    CAS  PubMed  Google Scholar 

  12. Ye, J. et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl. Acad. Sci. USA 109, 6904–6909 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, Q. et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc. Natl. Acad. Sci. USA 108, 4129–4134 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vander Heiden, M.G. et al. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem. Pharmacol. 79, 1118–1124 (2010).

    CAS  PubMed  Google Scholar 

  15. Boxer, M.B. et al. Evaluation of substituted N,N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J. Med. Chem. 53, 1048–1055 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang, J.K. et al. Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg. Med. Chem. Lett. 20, 3387–3393 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shim, H. et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. USA 94, 6658–6663 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fantin, V.R., St-Pierre, J. & Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434 (2006).

    CAS  PubMed  Google Scholar 

  19. Qing, G. et al. Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1alpha. Cancer Res. 70, 10351–10361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, Y. et al. Selective active site inhibitors of human lactate dehydrogenases A4, B4, and C4. Biochem. Pharmacol. 62, 81–89 (2001).

    CAS  PubMed  Google Scholar 

  21. Le, A. et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc. Natl. Acad. Sci. USA 107, 2037–2042 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Granchi, C. et al. Discovery of N-hydroxyindole-based inhibitors of human lactate dehydrogenase isoform A (LDH-A) as starvation agents against cancer cells. J. Med. Chem. 54, 1599–1612 (2011).

    CAS  PubMed  Google Scholar 

  23. Bonnet, S. et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007).

    CAS  PubMed  Google Scholar 

  24. Michelakis, E.D. et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci. Transl. Med. 2, 31ra34 (2010).

    CAS  PubMed  Google Scholar 

  25. Cairns, R.A., Papandreou, I., Sutphin, P.D. & Denko, N.C. Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc. Natl. Acad. Sci. USA 104, 9445–9450 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dimmer, K.S., Friedrich, B., Lang, F., Deitmer, J.W. & Broer, S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem. J. 350, 219–227 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gallagher, S.M., Castorino, J.J., Wang, D. & Philp, N.J. Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Cancer Res. 67, 4182–4189 (2007).

    CAS  PubMed  Google Scholar 

  28. Vegran, F., Boidot, R., Michiels, C., Sonveaux, P. & Feron, O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 71, 2550–2560 (2011).

    CAS  PubMed  Google Scholar 

  29. Bueno, V. et al. The specific monocarboxylate transporter (MCT1) inhibitor, AR-C117977, a novel immunosuppressant, prolongs allograft survival in the mouse. Transplantation 84, 1204–1207 (2007).

    CAS  PubMed  Google Scholar 

  30. Sonveaux, P. et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930–3942 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vander Heiden, M.G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 10, 671–684 (2011).

    CAS  PubMed  Google Scholar 

  32. Wise, D.R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA 108, 19611–19616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Metallo, C.M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2012).

    CAS  Google Scholar 

  34. Mullen, A.R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2012).

    CAS  Google Scholar 

  35. Wise, D.R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA 105, 18782–18787 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762–765 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuneva, M., Zamboni, N., Oefner, P., Sachidanandam, R. & Lazebnik, Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178, 93–105 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuneva, M.O. et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu, W. et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. USA 107, 7455–7460 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, J.B. et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18, 207–219 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cassago, A. et al. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc. Natl. Acad. Sci. USA 109, 1092–1097 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kita, K., Suzuki, T. & Ochi, T. Diphenylarsinic acid promotes degradation of glutaminase C by mitochondrial Lon protease. J. Biol. Chem. 287, 18163–18172 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahluwalia, G.S., Grem, J.L., Hao, Z. & Cooney, D.A. Metabolism and action of amino acid analog anti-cancer agents. Pharmacol. Ther. 46, 243–271 (1990).

    CAS  PubMed  Google Scholar 

  44. Robinson, M.M. et al. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J. 406, 407–414 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Le, A. et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110–121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, C. et al. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Cancer Res. 69, 7986–7993 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Peng, G., Dixon, D.A., Muga, S.J., Smith, T.J. & Wargovich, M.J. Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol. Carcinog. 45, 309–319 (2006).

    CAS  PubMed  Google Scholar 

  48. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Locasale, J.W. et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 43, 869–874 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tibbetts, A.S. & Appling, D.R. Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 30, 57–81 (2010).

    CAS  PubMed  Google Scholar 

  51. Liang, X.H. et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999).

    CAS  PubMed  Google Scholar 

  52. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Liang, C. et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 8, 688–699 (2006).

    CAS  PubMed  Google Scholar 

  54. Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062–1075 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lau, A. et al. A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol. Cell. Biol. 30, 3275–3285 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lum, J.J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005).

    CAS  PubMed  Google Scholar 

  58. Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51–64 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21, 1367–1381 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Karantza-Wadsworth, V. et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21, 1621–1635 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Miao, Y., Zhang, Y., Chen, Y., Chen, L. & Wang, F. GABARAP is overexpressed in colorectal carcinoma and correlates with shortened patient survival. Hepatogastroenterology 57, 257–261 (2010).

    PubMed  Google Scholar 

  62. Fujii, S. et al. Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci. 99, 1813–1819 (2008).

    CAS  PubMed  Google Scholar 

  63. Wei, H. et al. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 25, 1510–1527 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lock, R. et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 22, 165–178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, M.J. et al. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J. Biol. Chem. 286, 12924–12932 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo, J.Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sheen, J.H., Zoncu, R., Kim, D. & Sabatini, D.M. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 19, 613–628 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheong, H., Lindsten, T., Wu, J., Lu, C. & Thompson, C.B. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc. Natl. Acad. Sci. USA 108, 11121–11126 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Eng, C.H., Yu, K., Lucas, J., White, E. & Abraham, R.T. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 3, ra31 (2010).

    PubMed  Google Scholar 

  71. Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. USA 107, 8788–8793 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kroemer, G. & Levine, B. Autophagic cell death: the story of a misnomer. Nat. Rev. Mol. Cell Biol. 9, 1004–1010 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu, Z. et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J. Clin. Invest. 118, 3917–3929 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nat. Rev. Cancer 7, 961–967 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, N. & Karantza, V. Autophagy as a therapeutic target in cancer. Cancer Biol. Ther. 11, 157–168 (2011).

    PubMed  PubMed Central  Google Scholar 

  76. Janku, F., McConkey, D.J., Hong, D.S. & Kurzrock, R. Autophagy as a target for anticancer therapy. Nat. Rev. Clin. Oncol. 8, 528–539 (2011).

    CAS  PubMed  Google Scholar 

  77. Poole, B. & Ohkuma, S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J. Cell Biol. 90, 665–669 (1981).

    CAS  PubMed  Google Scholar 

  78. Amaravadi, R.K. et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest. 117, 326–336 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Maclean, K.H., Dorsey, F.C., Cleveland, J.L. & Kastan, M.B. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J. Clin. Invest. 118, 79–88 (2008).

    CAS  PubMed  Google Scholar 

  80. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–714 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ward, P.S. et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225–234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yazbeck, V.Y. et al. Temsirolimus downregulates p21 without altering cyclin D1 expression and induces autophagy and synergizes with vorinostat in mantle cell lymphoma. Exp. Hematol. 36, 443–450 (2008).

    CAS  PubMed  Google Scholar 

  83. Crazzolara, R. et al. Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood 113, 3297–3306 (2009).

    CAS  PubMed  Google Scholar 

  84. Takeuchi, H. et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 65, 3336–3346 (2005).

    CAS  PubMed  Google Scholar 

  85. Carayol, N. et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc. Natl. Acad. Sci. USA 107, 12469–12474 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ertmer, A. et al. The anticancer drug imatinib induces cellular autophagy. Leukemia 21, 936–942 (2007).

    CAS  PubMed  Google Scholar 

  87. Milano, V., Piao, Y., LaFortune, T. & de Groot, J. Dasatinib-induced autophagy is enhanced in combination with temozolomide in glioma. Mol. Cancer Ther. 8, 394–406 (2009).

    CAS  PubMed  Google Scholar 

  88. Gorzalczany, Y. et al. Combining an EGFR directed tyrosine kinase inhibitor with autophagy-inducing drugs: a beneficial strategy to combat non-small cell lung cancer. Cancer Lett. 310, 207–215 (2011).

    CAS  PubMed  Google Scholar 

  89. Ding, W.X. et al. Oncogenic transformation confers a selective susceptibility to the combined suppression of the proteasome and autophagy. Mol. Cancer Ther. 8, 2036–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhu, K., Dunner, K. Jr. & McConkey, D.J. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29, 451–462 (2010).

    CAS  PubMed  Google Scholar 

  91. Shao, Y., Gao, Z., Marks, P.A. & Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA 101, 18030–18035 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Carew, J.S. et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110, 313–322 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ellis, L. et al. The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy. Blood 114, 380–393 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Kanzawa, T. et al. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448–457 (2004).

    CAS  PubMed  Google Scholar 

  95. Martin, A.P. et al. BCL-2 family inhibitors enhance histone deacetylase inhibitor and sorafenib lethality via autophagy and overcome blockade of the extrinsic pathway to facilitate killing. Mol. Pharmacol. 76, 327–341 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wei, Y. et al. The combination of a histone deacetylase inhibitor with the Bcl-2 homology domain-3 mimetic GX15–070 has synergistic antileukemia activity by activating both apoptosis and autophagy. Clin. Cancer Res. 16, 3923–3932 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Qian, W., Liu, J., Jin, J., Ni, W. & Xu, W. Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk. Res. 31, 329–339 (2007).

    PubMed  Google Scholar 

  98. Kanzawa, T., Kondo, Y., Ito, H., Kondo, S. & Germano, I. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res. 63, 2103–2108 (2003).

    CAS  PubMed  Google Scholar 

  99. Opipari, A.W. Jr. et al. Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res. 64, 696–703 (2004).

    CAS  PubMed  Google Scholar 

  100. Seglen, P.O. & Gordon, P.B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. USA 79, 1889–1892 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol. 25, 1025–1040 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Blommaart, E.F., Krause, U., Schellens, J.P., Vreeling-Sindelarova, H. & Meijer, A.J. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem. 243, 240–246 (1997).

    CAS  PubMed  Google Scholar 

  103. Petiot, A., Ogier-Denis, E., Blommaart, E.F., Meijer, A.J. & Codogno, P. Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992–998 (2000).

    CAS  PubMed  Google Scholar 

  104. Rahim, R. & Strobl, J.S. Hydroxychloroquine, chloroquine, and all-trans retinoic acid regulate growth, survival, and histone acetylation in breast cancer cells. Anticancer Drugs 20, 736–745 (2009).

    CAS  PubMed  Google Scholar 

  105. Degtyarev, M. et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J. Cell Biol. 183, 101–116 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fan, Q.W. et al. Akt and autophagy cooperate to promote survival of drug-resistant glioma. Sci. Signal. 3, ra81 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kanematsu, S. et al. Autophagy inhibition enhances sulforaphane-induced apoptosis in human breast cancer cells. Anticancer Res. 30, 3381–3390 (2010).

    CAS  PubMed  Google Scholar 

  108. Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct. Funct. 23, 33–42 (1998).

    CAS  PubMed  Google Scholar 

  109. Hsu, K.F. et al. Cathepsin L mediates resveratrol-induced autophagy and apoptotic cell death in cervical cancer cells. Autophagy 5, 451–460 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Thompson laboratory for helpful discussions. C.B.T. is supported by grants from the US National Institutes of Health and National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig B Thompson.

Ethics declarations

Competing interests

C.B.T. is a named inventor on patent applications filed by the University of Pennsylvania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheong, H., Lu, C., Lindsten, T. et al. Therapeutic targets in cancer cell metabolism and autophagy. Nat Biotechnol 30, 671–678 (2012). https://doi.org/10.1038/nbt.2285

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2285

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer