Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting

Abstract

Functional analysis of genome sequences requires methods for cloning DNA of interest. However, existing methods, such as library cloning and screening, are too demanding or inefficient for high-throughput application to the wealth of genomic data being delivered by massively parallel sequencing. Here we describe direct DNA cloning based on the discovery that the full-length Rac prophage protein RecE and its partner RecT mediate highly efficient linear-linear homologous recombination mechanistically distinct from conventional recombineering mediated by Redαβ from lambda phage or truncated versions of RecET. We directly cloned all ten megasynthetase gene clusters (each 10–52 kb in length) from Photorhabdus luminescens into expression vectors and expressed two of them in a heterologous host to identify the metabolites luminmycin A and luminmide A/B. We also directly cloned cDNAs and exactly defined segments from bacterial artificial chromosomes. Direct cloning with full-length RecE expands the DNA engineering toolbox and will facilitate bioprospecting for natural products.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Full-length RecE mediates recombination between two substrates.
Figure 2: Full-length RecE plus RecT is required for enhanced LLHR.
Figure 3: LCHR and LLHR are mechanistically different.
Figure 4: Evaluation of different configurations of inducible recombinase expression.
Figure 5: Expression of directly cloned PKS-NRPS biosynthetic gene clusters.
Figure 6: A two-step, double recombination 'fishing' strategy enhances the identification of desired products.

Similar content being viewed by others

References

  1. Bode, H.B. & Müller, R. The impact of bacterial genomics on natural product research. Angew. Chem. Int. Ed. Engl. 44, 6828–6846 (2005).

    Article  CAS  Google Scholar 

  2. Koonin, E.V. & Wolf, Y.I. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 36, 6688–6719 (2008).

    Article  CAS  Google Scholar 

  3. Lagesen, K., Ussery, D.W. & Wassenaar, T.M. Genome update: the 1000th genome–a cautionary tale. Microbiology 156, 603–608 (2010).

    Article  CAS  Google Scholar 

  4. Banik, J.J. & Brady, S.F. Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr. Opin. Microbiol. 13, 603–609 (2010).

    Article  CAS  Google Scholar 

  5. Simon, C. & Daniel, R. Metagenomic analyses: past and future trends. Appl. Environ. Microbiol. 77, 1153–1161 (2011).

    Article  CAS  Google Scholar 

  6. Donadio, S., Monciardini, P. & Sosio, M. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat. Prod. Rep. 24, 1073–1109 (2007).

    Article  CAS  Google Scholar 

  7. Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Edn Engl. 48, 4688–4716 (2009).

    Article  CAS  Google Scholar 

  8. Fischbach, M.A. & Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  Google Scholar 

  9. Zhumabayeva, B., Chenchik, A. & Siebert, P.D. RecA-mediated affinity capture: a method for full-length cDNA cloning. Biotechniques 27, 834 (1999).

    Article  CAS  Google Scholar 

  10. Demidov, V.V. et al. Kinetics and mechanism of the DNA double helix invasion by pseudocomplementary peptide nucleic acids. Proc. Natl. Acad. Sci. USA 99, 5953–5958 (2002).

    Article  CAS  Google Scholar 

  11. Ito, T., Smith, C.L. & Cantor, C.R. Sequence-specific DNA purification by triplex affinity capture. Proc. Natl. Acad. Sci. USA 89, 495–498 (1992).

    Article  CAS  Google Scholar 

  12. Kouprina, N. & Larionov, V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat. Protoc. 3, 371–377 (2008).

    Article  CAS  Google Scholar 

  13. Zhang, Y., Muyrers, J.P.P., Testa, G. & Stewart, A.F. DNA cloning by homologous recombination in Escherichia coli. Nat. Biotechnol. 18, 1314–1317 (2000).

    Article  CAS  Google Scholar 

  14. Yonemura, I. et al. Direct cloning of full-length mouse mitochondrial DNA using a Bacillus subtilis genome vector. Gene 391, 171–177 (2007).

    Article  CAS  Google Scholar 

  15. Zhang, Y., Buchholz, F., Muyrers, J.P. & Stewart, F.A. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20, 123–128 (1998).

    Article  CAS  Google Scholar 

  16. Muyrers, J.P.P., Zhang, Y., Testa, G. & Stewart, A.F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res. 27, 1555–1557 (1999).

    Article  CAS  Google Scholar 

  17. Copeland, N.G., Jenkins, N.A. & Court, D.L. Recombineering: a powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2, 769–779 (2001).

    Article  CAS  Google Scholar 

  18. Muyrers, J.P., Zhang, Y., Buchholz, F. & Stewart, A.F. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev. 14, 1971–1982 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Testa, G. et al. Engineering the mouse genome with bacterial artificial chromosomes to create multipurpose alleles. Nat. Biotechnol. 21, 443–447 (2003).

    Article  CAS  Google Scholar 

  20. Wang, J. et al. An improved recombineering approach by adding RecA to lambda Red recombination. Mol. Biotechnol. 32, 43–53 (2006).

    Article  Google Scholar 

  21. Sarov, M. et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat. Methods 3, 839–844 (2006).

    Article  CAS  Google Scholar 

  22. Fu, J., Teucher, M., Anastassiadis, K., Skarnes, W. & Stewart, A.F. A recombineering pipeline to make conditional targeting constructs. Methods Enzymol. 477, 125–144 (2010).

    Article  CAS  Google Scholar 

  23. Kovall, R. & Matthews, B.W. Toroidal structure of lambda-exonuclease. Science 277, 1824–1827 (1997).

    Article  CAS  Google Scholar 

  24. Chu, C.C., Templin, A. & Clark, A.J. Suppression of a frameshift mutation in the recE gene of Escherichia coli K-12 occurs by gene fusion. J. Bacteriol. 171, 2101–2109 (1989).

    Article  CAS  Google Scholar 

  25. Zhang, J.J., Xing, X., Herr, A.B. & Bell, C.E. Crystal structure of E. coli RecE protein reveals a toroidal tetramer for processing double-stranded DNA breaks. Structure 17, 690–702 (2009).

    Article  Google Scholar 

  26. Duchaud, E. et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 21, 1307–1313 (2003).

    Article  CAS  Google Scholar 

  27. Maresca, M. et al. Single-stranded heteroduplex intermediates in lambda Red homologous recombination. BMC Mol. Biol. 11, 54 (2010).

    Article  Google Scholar 

  28. Murphy, K.C. The lambda Gam protein inhibits RecBCD binding to dsDNA ends. J. Mol. Biol. 371, 19–24 (2007).

    Article  CAS  Google Scholar 

  29. Court, R., Cook, N., Saikrishnan, K. & Wigley, D. The crystal structure of lambda-Gam protein suggests a model for RecBCD inhibition. J. Mol. Biol. 371, 25–33 (2007).

    Article  CAS  Google Scholar 

  30. Zhang, Y., Muyrers, J.P., Rientjes, J. & Stewart, A.F. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol. Biol. 4, 1 (2003).

    Article  Google Scholar 

  31. Court, D.L., Sawitzke, J.A. & Thomason, L.C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).

    Article  CAS  Google Scholar 

  32. Mosberg, J.A., Lajoie, M.J. & Church, G.M. Lambda Red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186, 791–799 (2010).

    Article  CAS  Google Scholar 

  33. Poteete, A.R. Involvement of DNA replication in phage lambda Red-mediated homologous recombination. Mol. Microbiol. 68, 66–74 (2008).

    Article  CAS  Google Scholar 

  34. Ellis, H.M., Yu, D.G., DiTizio, T. & Court, D.L. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc. Natl. Acad. Sci. USA 98, 6742–6746 (2001).

    Article  CAS  Google Scholar 

  35. Bowen, D. et al. Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280, 2129–2132 (1998).

    Article  CAS  Google Scholar 

  36. Waterfield, N.R. et al. Rapid Virulence Annotation (RVA): identification of virulence factors using a bacterial genome library and multiple invertebrate hosts. Proc. Natl. Acad. Sci. USA 105, 15967–15972 (2008).

    Article  CAS  Google Scholar 

  37. Homburg, S., Oswald, E., Hacker, J. & Dobrindt, U. Expression analysis of the colibactin gene cluster coding for a novel polyketide in Escherichia coli. FEMS Microbiol. Lett. 275, 255–262 (2007).

    Article  CAS  Google Scholar 

  38. Gaitatzis, N., Hans, A., Müller, R. & Beyer, S. The mtaA gene of the myxothiazol biosynthetic gene cluster from Stigmatella aurantiaca DW4/3–1 encodes a phosphopantetheinyl transferase that activates polyketide synthases and polypeptide synthetases. J. Biochem. 129, 119–124 (2001).

    Article  CAS  Google Scholar 

  39. Amrein, H. et al. Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D-R. Mol. Plant Microbe Interact. 17, 90–97 (2004).

    Article  CAS  Google Scholar 

  40. Schellenberg, B., Bigler, L. & Dudler, R. Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ. Microbiol. 9, 1640–1650 (2007).

    Article  CAS  Google Scholar 

  41. Oka, M. et al. Glidobactin-A, glidobactin-B and glidobactin-C, new antitumor antibiotics. II. Structure elucidation. J. Antibiot. 41, 1338–1350 (1988).

    Article  CAS  Google Scholar 

  42. Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63, 751–813 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Iyer, L.M., Koonin, E.V. & Aravind, L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics 3, 8 (2002).

    Article  Google Scholar 

  44. Erler, A. et al. Conformational adaptability of Redbeta during DNA annealing and implications for its structural relationship with Rad52. J. Mol. Biol. 391, 586–598 (2009).

    Article  CAS  Google Scholar 

  45. Yamamoto, T., Moerschell, R.P., Wakem, L.P., Komarpanicucci, S. & Sherman, F. Strand-specificity in the transformation of yeast with synthetic oligonucleotides. Genetics 131, 811–819 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Swingle, B. et al. Oligonucleotide recombination in Gram-negative bacteria. Mol. Microbiol. 75, 138–148 (2010).

    Article  CAS  Google Scholar 

  47. Craig, J.W., Chang, F.Y., Kim, J.H., Obiajulu, S.C. & Brady, S.F. Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl. Environ. Microbiol. 76, 1633–1641 (2010).

    Article  CAS  Google Scholar 

  48. Wenzel, S.C. et al. Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via Red/ET recombineering. Chem. Biol. 12, 349–356 (2005).

    Article  CAS  Google Scholar 

  49. Fu, J. et al. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res. 36, e113 (2008).

    Article  Google Scholar 

  50. Bachmann, B.O. & Ravel, J. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol. 458, 181–217 (2009).

    Article  CAS  Google Scholar 

  51. Ansari, M.Z., Yadav, G., Gokhale, R.S. & Mohanty, D. NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasynthases. Nucleic Acids Res. 32, W405–W413 (2004).

    Article  CAS  Google Scholar 

  52. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  53. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).

    Article  CAS  Google Scholar 

  54. Del Vecchio, F. et al. Active-site residue, domain and module swaps in modular polyketide synthases. J. Ind. Microbiol. Biotechnol. 30, 489–494 (2003).

    Article  CAS  Google Scholar 

  55. Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D.H. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33, 5799–5808 (2005).

    Article  CAS  Google Scholar 

  56. Larkin, M.A. et al. Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research work in R&D in Gene Bridges (Y.Z.) was partially funded by the Bundesministerium für Bildung und Forschung (MiPro). This work was supported by funding to A.F.S. from the EU 6th and 7th Framework projects, EUCOMM and EUCOMMTOOLS. Research in the laboratory of R.M. was funded by the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung. X.B. is supported by China Scholarship Council. The authors thank J. Herrmann in the laboratory of R.M. for cytotoxic activity assay.

Author information

Authors and Affiliations

Authors

Contributions

J.F., A.F.S. and Y.Z. discovered the LLHR activity of full-length RecE. J.F., X.B., S.H., H.W., F.H., P.M.S., L.X. and Y.Z. made the DNA constructs and E. coli strains. X.B., A.P., R.M. and Y.Z. analyzed the secondary metabolites. J.F., X.B.,L.X., R.M., A.F.S. and Y.Z. designed the experiments and wrote the paper.

Corresponding authors

Correspondence to Rolf Müller, A Francis Stewart or Youming Zhang.

Ethics declarations

Competing interests

R.M., A.F.S. and Y.Z. are shareholders of the company Gene Bridges that holds the exclusive rights to Red and RecET recombineering methodologies.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–7, Supplementary Results and Supplementary Figures 1–13 (PDF 4526 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Bian, X., Hu, S. et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30, 440–446 (2012). https://doi.org/10.1038/nbt.2183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2183

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research