Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma

Abstract

Multiple intravenous injections of a cDNA library, derived from human melanoma cell lines and expressed using the highly immunogenic vector vesicular stomatitis virus (VSV), cured mice with established melanoma tumors. Successful tumor eradication was associated with the ability of mouse lymphoid cells to mount a tumor-specific CD4+ interleukin (IL)-17 recall response in vitro. We used this characteristic IL-17 response to screen the VSV-cDNA library and identified three different VSV-cDNA virus clones that, when used in combination but not alone, achieved the same efficacy against tumors as the complete parental virus library. VSV-expressed cDNA libraries can therefore be used to identify tumor rejection antigens that can cooperate to induce anti-tumor responses. This technology should be applicable to antigen discovery for other cancers, as well as for other diseases in which immune reactivity against more than one target antigen contributes to disease pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Validation of the altered self melanoma epitope VSV-cDNA library.
Figure 2: Intravenous ASMEL cures established B16 melanomas.
Figure 3: VSV functions as an hsp70-mediated adjuvant.
Figure 4: VSV-induced TGF-β masks the tumor-specific IL-17 recall response.
Figure 5: Tumor-specific immunity induced by VSV-cDNA libraries is mediated by combinations of antigens.

Similar content being viewed by others

References

  1. Pardoll, D.M. Cancer vaccines. Nat. Med. 4, 525–531 (1998).

    Article  CAS  Google Scholar 

  2. Park, T.S., Rosenberg, S.A. & Morgan, R.A. Treating cancer with genetically engineered T cells. Trends Biotechnol. 29, 550–557 (2011).

    Article  CAS  Google Scholar 

  3. Uchi, H. et al. Unraveling the complex relationship between cancer immunity and autoimmunity: lessons from melanoma and vitiligo. Adv. Immunol. 90, 215–241 (2006).

    Article  CAS  Google Scholar 

  4. Koos, D. et al. Tumor vaccines in 2010: need for integration. Cell. Immunol. 263, 138–147 (2010).

    Article  CAS  Google Scholar 

  5. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  Google Scholar 

  6. Rosenberg, S.A. & Dudley, M.E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 21, 233–240 (2009).

    Article  CAS  Google Scholar 

  7. Drake, C.G., Jaffee, E.M. & Pardoll, D.M. Mechanisms of immune evasion by tumors. Adv. Immunol. 90, 51–81 (2006).

    Article  CAS  Google Scholar 

  8. Poschke, I., Mougiakakos, D. & Kiessling, R. Camouflage and sabotage: tumor escape from the immune system. Cancer Immunol. Immunother. 60, 1161–1171 (2011).

    Article  CAS  Google Scholar 

  9. Gogas, H. et al. Prognostic significance of autoimmunity during treatment of melanoma with interferon. N. Engl. J. Med. 354, 709–718 (2006).

    Article  CAS  Google Scholar 

  10. Daniels, G. et al. A simple method to cure established tumors by inflammatory killing of normal cells. Nat. Biotechnol. 22, 1125–1132 (2004).

    Article  CAS  Google Scholar 

  11. Ferrone, S. Immunotherapy dispenses with tumor antigens. Nat. Biotechnol. 22, 1096–1098 (2004).

    Article  CAS  Google Scholar 

  12. Kottke, T. et al. Antitumor immunity can be uncoupled from autoimmunity following heat shock protein 70-mediated inflammatory killing of normal pancreas. Cancer Res. 69, 7767–7774 (2009).

    Article  CAS  Google Scholar 

  13. Kottke, T. et al. Induction of hsp70-mediated, Th17 autoimmunity can be exploited as immunotherapy for metastatic prostate cancer. Cancer Res. 67, 11970–11979 (2007).

    Article  CAS  Google Scholar 

  14. Sanchez-Perez, L. et al. Killing of normal melanocytes, combined with hsp70 and CD40L expression, cures large established melanomas. J. Immunol. 177, 4168–4177 (2006).

    Article  CAS  Google Scholar 

  15. Sanchez-Perez, L. et al. Potent selection of antigen loss variants of B16 melanoma following inflammatory killing of melanocytes in vivo. Cancer Res. 65, 2009–2017 (2005).

    Article  CAS  Google Scholar 

  16. Turk, M.J., Wolchok, J.D., Guevara-Patino, J.A., Goldberg, S.M. & Houghton, A.N. Multiple pathways to tumor immunity and concomitant autoimmunity. Immunol. Rev. 188, 122–135 (2002).

    Article  CAS  Google Scholar 

  17. Alvarez-Breckenridge, C. & Chiocca, E.A. A viral strategy to ambush tumors. Nat. Med. 17, 784–785 (2011).

    Article  CAS  Google Scholar 

  18. Kottke, T. et al. Broad antigenic coverage induced by viral cDNA library-based vaccination cures established tumors. Nat. Med. 17, 854–859 (2011).

    Article  CAS  Google Scholar 

  19. Braxton, C.L., Puckett, S.H., Mizel, S.B. & Lyles, D.S. Protection against lethal vaccinia virus challenge by using an attenuated matrix protein mutant vesicular stomatitis virus vaccine vector expressing poxvirus antigens. J. Virol. 84, 3552–3561 (2010).

    Article  CAS  Google Scholar 

  20. Bridle, B.W. et al. Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol. Ther. 17, 1814–1821 (2009).

    Article  CAS  Google Scholar 

  21. Bridle, B.W. et al. Potentiating cancer immunotherapy using an oncolytic virus. Mol. Ther. 18, 1430–1439 (2010).

    Article  CAS  Google Scholar 

  22. Cobleigh, M.A., Bouonocore, L., Uprichard, S.L., Rose, J.K. & Robek, M.D. A vesicular stomatitis virus-based hepatitis B virus vaccine vector provides protection against challenge in a single dose. J. Virol. 84, 7513–7522 (2010).

    Article  CAS  Google Scholar 

  23. Diaz, R.M. et al. Oncolytic immunovirotherapy for melanoma using Vesicular Stomatitis Virus. Cancer Res. 67, 2840–2848 (2007).

    Article  CAS  Google Scholar 

  24. Geisbert, T.W. et al. Single-injection vaccine protects nonhuman primates against infection with marburg virus and three species of ebola virus. J. Virol. 83, 7296–7304 (2009).

    Article  CAS  Google Scholar 

  25. Qiao, J. et al. Purging metastases in lymphoid organs using a combination of antigen-nonspecific adoptive T cell therapy, oncolytic virotherapy and immunotherapy. Nat. Med. 14, 37–44 (2008).

    Article  CAS  Google Scholar 

  26. Schwartz, J.A. et al. Potent vesicular stomatitis virus-based avian influenza vaccines provide long-term sterilizing immunity against heterologous challenge. J. Virol. 84, 4611–4618 (2010).

    Article  CAS  Google Scholar 

  27. Guevara-Patino, J.A. et al. Optimization of a self antigen for presentation of multiple epitopes in cancer immunity. J. Clin. Invest. 116, 1382–1390 (2006).

    Article  CAS  Google Scholar 

  28. Guevara-Patino, J.A., Turk, M.J., Wolchok, J.D. & Houghton, A.N. Immunity to cancer through immune recognition of altered self: studies with melanoma. Adv. Cancer Res. 90, 157–177 (2003).

    Article  CAS  Google Scholar 

  29. Overwijk, W.W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).

    Article  CAS  Google Scholar 

  30. Overwijk, W. et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med. 198, 569–580 (2003).

    Article  CAS  Google Scholar 

  31. Galivo, F. et al. Interference of CD40L-mediated tumor immunotherapy by oncolytic VSV. Hum. Gene Ther. 21, 439–450 (2010).

    Article  CAS  Google Scholar 

  32. Galivo, F. et al. Single-cycle viral gene expression, rather than progressive replication and oncolysis, is required for VSV therapy of B16 melanoma. Gene Ther. 17, 158–170 (2010).

    Article  CAS  Google Scholar 

  33. Wongthida, P. et al. VSV oncolytic virotherapy in the B16 model depends upon intact MyD88 signaling. Mol. Ther. 19, 150–158 (2011).

    Article  CAS  Google Scholar 

  34. Willmon, C. et al. Vesicular stomatitis virus-induced immune suppressor cells generate antagonism between intra-tumoral oncolytic virus and cyclophosphamide. Mol. Ther. 19, 140–149 (2011).

    Article  CAS  Google Scholar 

  35. Hogquist, K.A. et al. T cell receptor antagonistic peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  36. Hall, A. & Brown, R. Human N-ras: cDNA cloning and gene structure. Nucleic Acids Res. 13, 5255–5268 (1985).

    Article  CAS  Google Scholar 

  37. Shibata, K., Takeda, K., Tomita, Y., Tagami, H. & Shibahara, S. Downstream region of the human tyrosinase-related protein gene enhances its promoter activity. Biochem. Biophys. Res. Commun. 184, 568–575 (1992).

    Article  CAS  Google Scholar 

  38. Suzuki, H., Hosokawa, Y., Nishikimi, M. & Ozawa, T. Structural organization of the human mitochondrial cytochrome c1 gene. J. Biol. Chem. 264, 1368–1374 (1989).

    CAS  PubMed  Google Scholar 

  39. Rausch, M.P. et al. GILT accelerates autoimmunity to the melanoma antigen tyrosinase-related protein 1. J. Immunol. 185, 2828–2835 (2010).

    Article  CAS  Google Scholar 

  40. Tanaka, S. et al. Target killing of carcinoembryonic antigen (CEA) - producing cholangiocarcinoma cells by polyamidoamine dendrimer-mediated transfer of an Epstein-Barr virus (EBV)-based plasmid vector carrying the CEA promoter. Cancer Gene Ther. 7, 1241–1249 (2000).

    Article  CAS  Google Scholar 

  41. Thomas, D.A. & Massague, J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).

    Article  CAS  Google Scholar 

  42. Linardakis, E. et al. Enhancing the efficacy of a weak allogeneic melanoma vaccine by viral fusogenic membrane glycoprotein-mediated tumor cell-tumor cell fusion. Cancer Res. 62, 5495–5504 (2002).

    CAS  PubMed  Google Scholar 

  43. Fernandez, M., Porosnicu, M., Markovic, D. & Barber, G.N. Genetically engineered vesicular stomatitis virus in gene therapy: Application for treatment of malignant disease. J. Virol. 76, 895–904 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Higgins for expert secretarial assistance. This work was supported by the Richard M. Schulze Family Foundation, the Mayo Foundation, Cancer Research UK, the US National Institutes of Health grants R01 CA107082, R01CA130878 and R01 CA132734, and a grant from Terry and Judith Paul. MyD88 KO mice (MyD88−/−) were a kind gift from L. Pease, Mayo Clinic.

Author information

Authors and Affiliations

Authors

Contributions

J.P., T.K., J.T., F.G., P.W., R.M.D., D.R. and E.I. ran the experiments. J.P., T.K., L.P., H.P., K.H., P.S., A.M. and R.V. conceived the experimental approach and planned the experiments. J.P., T.K., H.P., K.H., P.S., A.M. and R.V. wrote the manuscript.

Corresponding author

Correspondence to Richard Vile.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 558 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulido, J., Kottke, T., Thompson, J. et al. Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nat Biotechnol 30, 337–343 (2012). https://doi.org/10.1038/nbt.2157

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing