Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene

Abstract

The ability of wheat to maintain a low sodium concentration ([Na+]) in leaves correlates with improved growth under saline conditions1,2. This trait, termed Na+ exclusion, contributes to the greater salt tolerance of bread wheat relative to durum wheat3,4. To improve the salt tolerance of durum wheat, we explored natural diversity in shoot Na+ exclusion within ancestral wheat germplasm. Previously, we showed that crossing of Nax2, a gene locus in the wheat relative Triticum monococcum into a commercial durum wheat (Triticum turgidum ssp. durum var. Tamaroi) reduced its leaf [Na+] (ref. 5). Here we show that a gene in the Nax2 locus, TmHKT1;5-A, encodes a Na+-selective transporter located on the plasma membrane of root cells surrounding xylem vessels, which is therefore ideally localized to withdraw Na+ from the xylem and reduce transport of Na+ to leaves. Field trials on saline soils demonstrate that the presence of TmHKT1;5-A significantly reduces leaf [Na+] and increases durum wheat grain yield by 25% compared to near-isogenic lines without the Nax2 locus.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: TmHKT1;5-A expression in yeast (S. cerevisiae) and X. laevis oocytes.
Figure 2: Localization of TmHKT1;5-A and its encoded protein, and its transcriptional regulation by salt.
Figure 3: Variation in salinity across a commercially farmed field, and the relative increase in grain yield due to the presence of TmHKT1:5-A.

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Horie, T., Hauser, F. & Schroeder, J.I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci. 14, 660–668 (2009).

    Article  CAS  Google Scholar 

  2. Munns, R., James, R.A. & Läuchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57, 1025–1043 (2006).

    Article  CAS  Google Scholar 

  3. Dvořák, J., Noaman, M.M., Goyal, S. & Gorham, J. Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from the Triticum aestivum L. chromosome 4D by homoeologous recombination. Theor. Appl. Genet. 87, 872–877 (1994).

    Article  Google Scholar 

  4. Gorham, J., Wyn Jones, R.G. & Bristol, A. Partial characterisation of the trait for enhanced K+-Na+ discrimination in the D genome of wheat. Planta 180, 590–597 (1990).

    Article  CAS  Google Scholar 

  5. James, R.A., Davenport, R.J. & Munns, R. Physiological characterisation of two genes for Na+ exclusion in durum wheat: Nax1 and Nax2. Plant Physiol. 142, 1537–1547 (2006).

    Article  CAS  Google Scholar 

  6. Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 37, 613–620 (2010).

    Article  Google Scholar 

  7. Tilman, D., Balzer, C., Hill, J. & Belfort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 108, 20260–20264 (2011).

    Article  CAS  Google Scholar 

  8. Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    Article  CAS  Google Scholar 

  9. Dubcovsky, J., María, G.S., Epstein, E., Luo, M.C. & Dvořák, J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor. Appl. Genet. 92, 448–454 (1996).

    Article  CAS  Google Scholar 

  10. Huang, S., Spielmeyer, W., Lagudah, E.S. & Munns, R. Comparative mapping of HKT genes in wheat, barley and rice, key determinants of Na+ transport and salt tolerance. J. Exp. Bot. 59, 927–937 (2008).

    Article  CAS  Google Scholar 

  11. Davenport, R.J., James, R.A., Zakrisson-Plogander, A., Tester, M. & Munns, R. Control of sodium transport in durum wheat. Plant Physiol. 137, 807–818 (2005).

    Article  CAS  Google Scholar 

  12. Byrt, C.S. et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol. 143, 1918–1928 (2007).

    Article  CAS  Google Scholar 

  13. Schachtman, D.P. & Schroeder, J.I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370, 655–658 (1994).

    Article  CAS  Google Scholar 

  14. Maser, P. et al. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett. 531, 157–161 (2002).

    Article  CAS  Google Scholar 

  15. Davenport, R.J. et al. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ. 30, 497–507 (2007).

    Article  CAS  Google Scholar 

  16. Møller, I.S. et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell 21, 2163–2178 (2009).

    Article  Google Scholar 

  17. Ren, Z.H. et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37, 1141–1146 (2005).

    Article  CAS  Google Scholar 

  18. Plett, D. et al. Improved salinity tolerance of rice through cell type-specific expression of AtHKT1;1. PLoS ONE 5, e12571 (2010).

    Article  Google Scholar 

  19. Sunarpi et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J. 44, 928–938 (2005).

    Article  CAS  Google Scholar 

  20. Jabnoune, M. et al. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol. 150, 1955–1971 (2009).

    Article  CAS  Google Scholar 

  21. Läuchli, A., James, R.A., Munns, R., Huang, C. & McCully, M. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ. 31, 1565–1574 (2008).

    Article  Google Scholar 

  22. Gassmann, W., Rubio, F. & Schroeder, J.I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant J. 10, 869–882 (1996).

    Article  CAS  Google Scholar 

  23. Yao, X. et al. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol. 152, 341–355 (2010).

    Article  CAS  Google Scholar 

  24. Uozumi, N. et al. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol. 122, 1249–1260 (2000).

    Article  CAS  Google Scholar 

  25. Yeo, A.R. & Flowers, T.J. Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust. J. Plant Physiol. 13, 161–173 (1986).

    Google Scholar 

  26. Schachtman, D.P., Munns, R. & Whitecross, M.I. Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Sci. 31, 992–997 (1991).

    Article  CAS  Google Scholar 

  27. Munns, R. & James, R.A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253, 201–218 (2003).

    Article  CAS  Google Scholar 

  28. James, R.A. et al. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl in salt-affected barley and durum wheat. Plant Cell Environ. 29, 2185–2197 (2006).

    Article  CAS  Google Scholar 

  29. Richards, R.A. Should selection for yield in saline regions be made on saline or non-saline soils? Euphytica 32, 431–438 (1983).

    Article  Google Scholar 

  30. James, R.A., Blake, C., Byrt, C.S. & Munns, R. Major genes for Na+ exclusion Nax1 and Nax2 (wheat HKT1;4 and HKT1;5) decrease Na+ accumulation in bread wheat under saline and waterlogged conditions. J. Exp. Bot. 62, 2939–2947 (2011).

    Article  CAS  Google Scholar 

  31. Rodríguez-Navarro, A. & Ramos, J. Dual system for potassium transport in Saccharomyces cerevisiae. J. Bacteriol. 159, 940–945 (1984).

    PubMed  PubMed Central  Google Scholar 

  32. Molendijk, A.J. et al. A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J. 53, 909–923 (2008).

    Article  CAS  Google Scholar 

  33. Gietz, R.D. & Schiestl, R.H. High efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    Article  CAS  Google Scholar 

  34. Roy, S.J. et al. Investigating glutamate receptor-like gene co-expression in Arabidopsis thaliana. Plant Cell Environ. 31, 861–871 (2008).

    Article  CAS  Google Scholar 

  35. Dick, D.A.T. & McLaughlin, S.G. The activities and concentration of sodium and potassium in toad oocytes. J. Physiol. (Lond.) 205, 61–78 (1969).

    Article  CAS  Google Scholar 

  36. Conn, S.J. et al. Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytol. 190, 583–594 (2011).

    Article  CAS  Google Scholar 

  37. Gilliham, M., Athman, A., Tyerman, S.D. & Conn, S.J. Cell-specific compartmentation of mineral nutrients is an essential mechanism for optimal plant productivity; another role for TPC1? Plant Signal. Behav. 6, 1656–1661 (2011).

    Article  Google Scholar 

  38. Koltai, H. & Bird, D.M. High throughput cellular localization of specific plant mRNAs by liquid-phase in situ reverse transcription-polymerase chain reaction of tissue sections. Plant Physiol. 123, 1203–1212 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank grain growers A. and J. Crowe for hosting our field trials on their property at Moree. We acknowledge the assistance of C. Blake (CSIRO), B. Collard, D. Gulliford (NSW DPI) and A. Smart (PCT); J. Dubcovsky, University of California, Davis, for kindly providing the BAC sequence used to design cslinkNax2; D. Cooper, T. Rathjen, A. Webster and J. Able for additional field data on Nax2. We thank S. Ramesh for extracting Xenopus oocytes, Adelaide Microscopy for facilities and training, G. Mayo for assistance with in situ PCR, S. Roy for assistance with confocal microscopy and flame photometry and O. Cotsaftis for the clone of OsHKT1;5. This research was supported by the Grains Research and Development Corporation (GRDC) of Australia and the Australian Research Council (ARC).

Author information

Authors and Affiliations

Authors

Contributions

R.M., R.A.J., R.A.H., M.T., D.P. and M.G. conceived the project and planned experiments. R.M. and M.G. supervised the research. B.X. performed all Xenopus, yeast and protoplast experiments and R.A.J. performed field research. C.S.B. performed wheat genotyping. S.D.T. assisted with electrophysiology experiments. S.J.C., A.A. and C.J. performed in situ PCR and qPCR. M.G., D.P., R.A.J. and R.M. wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Matthew Gilliham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–4 and Supplementary Figs. 1–4 (PDF 486 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Munns, R., James, R., Xu, B. et al. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30, 360–364 (2012). https://doi.org/10.1038/nbt.2120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing