A mathematical concept known as a de Bruijn graph turns the formidable challenge of assembling a contiguous genome from billions of short sequencing reads into a tractable computational problem.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Euler, L. Commentarii Academiae Scientiarum Petropolitanae 8, 128–140 (1741).
Skiena, S. The Algorithm Design Manual (Springer, Berlin, 2008).
Lander, E. et al. Nature 409, 860–921 (2001).
Venter, J.C. et al. Science 291, 1304–1351 (2001).
Kececioglu, J. & Myers, E. Algorithmica 13, 7–51 (1995).
Adams, M. et al. Science 287, 2185–2195 (2000).
Fleischmann, R. et al. Science 269, 496–512 (1995).
Schatz, M., Delcher, A. & Salzberg, S. Genome Res. 20, 1165–1173 (2010).
Bandeira, N., Pham, V., Pevzner, P., Arnott, D. & Lill, J. Nat. Biotechnol. 26, 1336–1338 (2008).
Pham, S. & Pevzner, P.A. Bioinformatics 26, 2509–2516 (2010).
Grabherr, M. et al. Nat. Biotechnol. 29, 644–652 (2011).
de Bruijn, N. Proc. Nederl. Akad. Wetensch. 49, 758–764 (1946).
Idury, R. & Waterman, M. J. Comput. Biol. 2, 291–306 (1995).
Pevzner, P.A., Tang, H. & Waterman, M. Proc. Natl. Acad. Sci. USA 98, 9748–9753 (2001).
Pevzner, P.A., Tang, H. & Tesler, G. Genome Res. 14, 1786–1796 (2004).
Chaisson, M. & Pevzner, P.A. Genome Res. 18, 324–330 (2008).
Zerbino, D. & Birney, E. Genome Res. 18, 821–829 (2008).
Butler, J. et al. Genome Res. 18, 810–820 (2008).
Simpson, J. et al. Genome Res. 19, 1117–1123 (2009).
Li, R. et al. Genome Res. 20, 265–272 (2010).
Paszkiewicz, K. & Studholme, D. Brief. Bioinform. 11, 457–472 (2010).
Miller, J., Koren, S. & Sutton, G. Genomics 95, 315–327 (2010).
Drmanac, R., Labat, I., Brukner, I. & Crkvenjakov, R. Genomics 4, 114–128 (1989).
Southern, E. United Kingdom patent application gb8810400 (1988).
Lysov, Y. et al. Doklady Academy Nauk USSR 303, 1508–1511 (1988).
Pevzner, P.A. J. Biomol. Struct. Dyn. 7, 63–73 (1989).
Acknowledgements
This work was supported by grants from Howard Hughes Medical Institute (HHMI grant 52005726), the US National Institutes of Health (NIH grant 3P41RR024851-02S1) and the National Science Foundation (NSF grant DMS-0718810). We are grateful to S. Wasserman for many helpful comments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Figure 1 and 2
De Bruijn graph from reads with sequencing errors (PDF 139 kb)
Rights and permissions
About this article
Cite this article
Compeau, P., Pevzner, P. & Tesler, G. How to apply de Bruijn graphs to genome assembly. Nat Biotechnol 29, 987–991 (2011). https://doi.org/10.1038/nbt.2023
Published:
Issue Date:
DOI: https://doi.org/10.1038/nbt.2023
This article is cited by
-
ViralVectors: compact and scalable alignment-free virome feature generation
Medical & Biological Engineering & Computing (2023)
-
Genomic and proteomic characterization of two strains of Shigella flexneri 2 isolated from infants’ stool samples in Argentina
BMC Genomics (2022)
-
Genomic signatures and evolutionary history of the endangered blue-crowned laughingthrush and other Garrulax species
BMC Biology (2022)
-
Robust data storage in DNA by de Bruijn graph-based de novo strand assembly
Nature Communications (2022)
-
Multiplex de Bruijn graphs enable genome assembly from long, high-fidelity reads
Nature Biotechnology (2022)